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I. INFORMATION AND DATA 

I.1. Notation, types and measurement of information 

I.1.1. Form and content of information 

Information is the main object of Computer Science and comes from the 
Latin word "Information", which means to report something (face, subject, 
fact, event, phenomenon, process), regardless of the form of its presentation. 

The concept of "Information" does not have an exact (mathematical) 
definition. If we try to give him an exact definition, then we again come to 
another vague notion and this can continue indefinitely. However, without 
knowing its exact definition, we can accept, understand, store, process and, if 
necessary, transfer to another entity. Taking into account what has been said, it 
is possible to give the following intuitive (not exact) definition of the concept 
"Information". 

Information is a reflection of the properties and relationships of material 
and non-material objects and subjects of the surrounding world. This means 
that each information is characterized by its form (message) and its content 
(meaning). 

In general, when we talk about a message, we need to remember the 
existence of its transmitter and receiver. They can be living organisms (people, 
animals, birds, fish, insects, etc.) and technical devices (telephone sets, radio 
stations and radio receivers, etc.). For example, if the receiver is a person, then 
he receives the message with his senses organ. 

The message from the transmitter to the receiver is transmitted through a 
special medium, called the communication channel. For example, as such, an 
environment for an audio message, one can take air in which sound waves can 
propagate, and a communication channel for a written message can be paper on 
which you can write text. 

The message is the bearer of the information value, i.e. the value of 
information is determined together with its message. 

The scheme of information transfer is shown in Figure I.1.1.1. 
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 Note I.1.1: 
1. A differently interpreted the same message is a bearer of different 

meanings. For example, readers, depending on their points of view, can 
perceive the same journal article in different ways. 

2. The same value can be transmitted by different messages. For example, 
the report of the same person on the same topic presented, in different 
languages. 

Therefore, between the transmitter and the receiver there must be a 
preliminary agreement on the form and the meaning of the message. Such an 
agreement is called the rule of interpretation. 

Interpretation of a given message is taken from a general rule that can be 
applied to a set of messages built according to a single law. For example, if a 
message is given as a sentence in a known natural language, then the rule for 
interpreting such a sentence can be taken from the general rule of interpretation 
applied to all sentences of that language. To the general rule of interpretation is 
also the rule of determining the value of a number by its form of recording. 
Also, it can include to the rule of obtaining an assertion or denial from a 
message in the form of an assertion that has the meaning "true" or "false", or 
from a question that requires a "yes" or "no" answer. For example, "Snow has a 
white color", "A person never dies", "Is it interesting to study computer 
science?", "Is it clear?". Interpretation of such messages also depends on the 
experience and knowledge of the receiver. 

When transmitting (receiving) a message, the state of the transmitter 
(receiver) varies with time. Therefore, we can consider the description of the 
material-energy state of the transmitter (receiver) as a function of х(t), 
depending on the time t. This function х(t) can be both continuous and discrete 
(discontinuous). Depending on this, the message of the information can be 
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continuous (analog) and discrete (digital). For example, to the continuous 
message of the information is the graph of a continuous function of the 
temperature of the medium that changes in time, and to a discrete message of 
the information, an information message using the symbols of a certain 
communication language. Any continuous information can be turned into 
discrete information, this is called discretization. To digitize a function among 
its infinitely many values, a limited number of values are taken that can 
characterize the remaining values: 

1) The axis of the graph's abscissa (domain of definition) of the function is 
divided into equal segments using a finite number of points  

t1, t2,..., tn  and it is assumed that in each segment the value of the function 
is constant, for example, is equal to the average value in this segment; 

2) Having designed the value of the function in each segment to the 
ordinate axis of the graph (area of change) of the function, it is necessary to 
find the points x1, x2,..., xn. 

The points x1, x2,..., xn found in this way will be considered as a discrete 
approximate representation of the continuous function х(t). Its accuracy can be 
infinitely improved by reducing the lengths in the function definition area, until 
the required requirement is met. 

The graphs of the continuous function х(t) and its sampling are shown in 
Figure I.1.1.2. 

 
 

The possibility of discretization of continuous information makes it 
possible to represent a message of this information with the help of symbols of 
the alphabet of some communication language. This is very important for the 
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reception, presentation, storage, processing and transmission of information 
using a computer. 

The message is given in a material-energy form (for example: light, sound, 
movement, symbol, etc.). In other words, the form is the expression of some 
language. These languages include: 

• Natural languages (Kazakh, Russian, English, etc.); 
• Mathematical language (a set of expressions containing conditional 

designations of properties and relations of mathematical objects); 
• Musical language (notes - many expressions, containing conditional 

designations of properties and relations of sounds in the sound series); 
• Language of deaf-mutes (many expressions containing conditional 

movements of the face and hands); 
• Artificial languages (programming languages, specification languages, 

design languages, etc.); 
Since we are interested in the ways of presenting and processing 

information only on digital (discrete) computers, we will only consider discrete 
information types and corresponding notations (artificial languages), which are 
a system of conditional symbols used to represent concepts and their 
relationships, And also the rules of their application in any field of knowledge 
or activity. 

The notation has its own alphabet, consisting of characters (letters) ordered 
in a certain sense, which will be used to construct words - a sequence of letters 
that has a certain meaning. The construction of words was carried out in 
accordance with the syntactic rules. 

 
Examples I.1.1. 
To see the relationship between a message and a value, consider a few 

examples. They are listed in Table I.1.1. 
 
Table I.1.1. Examples of the message. 

№ 1-st message 2–nd message  
1.  Мен жақсы оқимын. Я учусь хорошо. 
2.  From the flame ice will turn out 1>3 
3.  Ты меня понял? X=0? 
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4.  ХХI 21 
5.  Tomorrow it will snow The lamp went out 
6.  ☼♀♂♥ © ® 
7.  I will say. Мен айтамын. 

 
Examples 1,2,3,4 show that you can send the same value to two different 

messages: in the first example, the sentences in Kazakh and Russian have the 
same value, in the second example the value is "false" Have two messages. In 
the third example, questions that require "yes" or "no" answers are listed. In the 
fourth example, the same number is represented in two ways. 

In the fifth example, the possibility of transmitting several values by the 
same message is shown: the first message means that it will get colder 
tomorrow or you can ride a sleigh. 

In the sixth example, it is shown the possibility of communicating 
according to preliminary symbols. The values of such messages are only 
accessible to those who know the meaning of these signs. 

In the seventh example, one meaning is conveyed by the sentences of two 
natural (English and Kazakh) languages. 

 
Tasks I.1.1. What language are these expressions: 
1. The Republic of Kazakhstan is an independent country. 
2. a + (b + c) = (a + b) + c. 
3.  
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Questions I.1.1. 

1. What is characterized by the information? 
2. What are the types of communication languages? 
3. What is the relationship between the message and the value? 
 
Tests I.1.1. 
1. Which language is the given expression (а+b+с)? 
A) Mathematical; 
B) Logical; 
C) Mimicry; 
D) Natural; 
E) Chemical. 
 
2. Between the transmitter and the receiver, what is the preliminary 

agreement about the type of message and its meaning? 
A) Interpretation; 
B) Integration; 
C) Intervention; 
D) Informatization. 
E) Interpolation; 
 
3. What is the relationship between the messages represented by the 

Roman numerals XIII and Arabic numerals 13 and their meanings? 
A) The same value of a number is written in two ways; 
B) Multivalued message; 
C) A single-valued message; 
D) One value and one message; 
E) There is no connection. 
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I.1.2. Volumetric units and amount of information 

The definition of the "Amount of information" is very difficult. To do this, 
you first need to determine the unit of measurement of information. It can be 
defined in two ways: volumetric and probabilistic. Both of these methods 
became known simultaneously in the 40s of the XX century. They were created 
by US scientists, one of the founders of the science of computer science John 
von Neumann and Claude Shannon. 

John von Neumann was the first to show the possibility of building 
computers, this led to the definition of a measure of information in a three-
dimensional way, and Claude Shannon defined the measures of information in 
a probabilistic way. 

The minimum indivisible unit of information is called a bit; it comes from 
two English words: binary digit. The reason for this was the convenience for 
computer developers to work with binary numbers while storing and 
processing information in the computer: a physical element having only 
multiple devices can implement two stable states, two stable states are denoted 
by binary digits 0 and 1. For example, it is easy to create a device showing the 
presence or absence of an electric current that measures a low or high voltage 
level, reveals the polarity of magnetization, etc. 

The amount of information written in binary digits 0 and 1 is the number 
of binary digits used in this record; this number will always be an integer. 

The next volumetric unit of information is called byte, it consists of 8 bits, 
i.e. 1 byte = 32 bit. In a single byte, you can write = 256 different characters 
from each other, i.e. The capacity of one byte is 256 bits. This means that with 
a single byte, you can represent 256 different (non-repeating) messages. 

The voluminous amount of information is a very large number. Therefore, 
large volumetric units of measurement are defined for the convenience of use. 
These units of measure are multiples of two, i.e. they must be powers of two. 
The list of voluminous units of information is given in Table I.1.2: 

Table I.1.2. List of voluminous units of information. 
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Examples I.1.2. 
1. If there are 50 pages in the book, 50 lines in each page, and 50 symbols 

in each line, then the volume of the book in bytes will be 400 * 50 * 50 = 1 000 
000 Byte = 1 MB, i.e. In a disk of 1 GB you can save 1000 of these books. 

2. If the size of the electronic book is 10 megabytes and the capacity of the 
electronic library is 100 gigabytes, then it can store  

100 * 1024/10 = 102400 electronic books. 
3. If the size of the electronic book is 10 megabytes and the capacity of the 

electronic library is 100 terabytes, then it can store 100 * 1024 * 1024/10 = 
104857600 electronic books. 

 
Tasks I.1.2. 
1. What are the ways to measure the amount of information? 
2. Find the volumetric size in the word "RIM". 
3. Specify the capacity of one byte. 
Help: 
1. Ways by John von Neumann and Claude Shannon. 
2. Information stored in the computer (word, number, figure, computer 

program) is written in binary digits. 
3. It is necessary to specify the number of bits in one byte. 
 
Questions I.1.2. 
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1. What is the minimum unit of information called? 
2. Who determined the amount of information? 
3. What should be the multiples of large units of information 

measurement? 
 
Tests I.1.2. 
1. How many bits are in one byte? 
A) 8; 
B) 10; 
C) 2; 
D) 0; 
E) 17 
 
2. How many megabytes will there be one GB? 
A) 1024; 
B) 1040; 
C) 10024; 
D) 124; 
E) 102400. 
 
3. How many gigabytes will one TB be? 
A) 10024; 
B) 1040; 
C) 1024; 
D) 124; 
E) 102400. 
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I.1.3. Probabilistic units and amount of information 

Before the introduction and discussion of the concept of "Probabilistic 
amount of information," let us consider one experiment relating to probability 
theory. As an example, you can take a throw N of a dice (the most common is 
N = 6). The result is the falling of the face, with the inscription of the digits 1, 
2, ..., N. 

We introduce a numerical measure-to-measure uncertainty, calling it 
entropy and denote by H. The data N and H will be in the following functional 
ratio: 

H = f (N),       (1.1) 

Where the function f is nonnegative and increasing for our N = 1, 2, ..., 6. 
Let us consider in more detail the throwing of a dice: 
1) Preparation for throwing a bone: its outcome is unknown, i.e. there is 

some uncertainty, and we denote it by H1; 
2) The dice are thrown: information on the outcome of the experiment is 

obtained; I will denote the number of this information; 
3) We denote the uncertainty of this experiment after its realization 

through H2; 
As the amount of information in the course of the experiment, it is possible 

to take the difference of uncertainties obtained before the experiment and after 
the experiment: 

I = H1 - H2                     (1.2) 
Obviously, in the case of obtaining a concrete result, the previously 

obtained uncertainty disappears, i. e. H2 = 0. Thus, the amount of information 
after the experiment will coincide with the initial entropy, i.e. I = H1. In other 
words, the uncertainty in experience coincides with information about the 
outcome of this experiment. Here, the value of H2 may not be zero, for 
example, during the experiment; the inscription of the next dropping edge is 
greater than 3. 

The next important circumstance is the determination of the form of the 
function f in the formula (1.1). If N denotes the number of faces and M denotes 
the number of dice tossed, the total number of outcomes determined by the 
vectors of length M and consisting of N characters will be N to the power M 

ܺ = ܰெ                     (1.3) 



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

14 
 

For example, in the case of two dice with six faces, we have              ܺ =
6ଶ = 36. In fact, each outcome of X is a pair (X1, X2), where X1 and X2 are the 
outcomes of the first and second casts respectively, and X is the total number of 
such pairs. 

The situation with throwing M times can be considered as a kind of 
complex system consisting of independent subsystems - "single casting of a 
bone". The entropy of such a system is M times larger than the entropy of one 
system (the principle of additivity of entropy): 

݂(6ெ) = ܯ ∙ ݂(6) 

This formula can be extended to the case of any N: 
݂(ܰெ) = ܯ ∙ ݂(ܰ)                       (1.4) 

Now let us logarithm the left and right parts of the formula (1.3): 
ln X = M ∙ ln N, 

Then M is as follows: 

N
XM

ln
ln

 . 

We substitute the value obtained for M into formula (1.4): 

 )(
ln
ln)( Nf

N
XXf  . 

Denoting by K a positive constant N
Nf

ln
)( , we obtain: 

f(X) = К ∙ ln Х, 
Or, taking into account (1.1), H = K ∙ ln N. 

Usually accept 2ln
1

K . This gives the Hartley formula: 

ܪ =  ଶܰ   (1.5)݃݋݈

Important for the introduction of any data is the question of what to take as 
a unit of its measurement. Obviously, H = 1 for N = 2. In other words, as a unit, 
the amount of information is taken to carry out an experiment consisting in 
obtaining one of two equiprobable outcomes (an example of such an 
experience is the coin toss, in which two outcomes are possible: "eagle "," 
Tails "). This unit of information is called a "bit". 
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All N outcomes of the above experiment are equally probable, and 
therefore we can assume that the "fraction" of each outcome is one N-th part of 
the total uncertainty of the experiment: 

N
N2log

. 

Moreover, the probability of the i-th outcome of Pi is obviously 1 / N. 
Thus, the entropy is found by Shannon's formula as follows: 

)1(log
1

2
i

N

i
i P

PH 


                   (1.6) 

The same formula (1.6) is taken as the measure of entropy in the case 
when the probabilities of different outcomes of the experiment are unequally 
probable (that is, P. may be different). 

 
Note I.1.3: 
The relationship between the volumetric and probabilistic amounts of 

information is ambiguous. Not every text written with binary symbols allows 
measuring the amount of information in a probabilistic sense, but certainly 
admits it in a voluminous sense. Further, if some message allows measurability 
of the amount of information in both senses, then they do not necessarily 
coincide, while the probabilistic amount of information cannot be greater than 
the volume one. 

 
Examples I.1.3. 
1. Consider an alphabet consisting of two signs 0 and 1. If we assume that 

the identical probability of their occurrence is associated with the signs 0 and 1 
in the binary alphabet (P(0) = P(1) = 0.5), then by the formula (1.5) the 
amount of information per character with binary coding will be equal to 

ܪ = ଶ 2݃݋݈ = 1 Bit. 
Thus, the amount of information (in bits), enclosed in a binary word, is 

equal to the number of binary signs in it. 
2. Define the amount of information associated with the appearance of 

each character in messages written in Russian. We will assume that the Russian 
alphabet consists of 33 letters and a "space" sign for the separation of words. 
By the formula (1.5) 
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H = log 34 = 5 bits. 
However, in the words of the Russian (as well as in the words of other 

languages), different letters occur unevenly often. By the formula (1.6): H = 
4.72 bits. 

 
Tasks I.1.3. 
1. Let in a box there are 16 different colored balls. You need to calculate 

the amount of information using entropy to pull out the white ball. 
2. Determine the amount of information associated with the appearance of 

each character in messages written in Kazakh in the 42-letter alphabet. 
3. Determine the amount of information associated with the appearance of 

each binary digit in messages recorded in one megabyte. 
 
Help: 

1. )1(log
1

2
i

N

i
i P

PH 


 . 

 
2. To determine the amount of information, use the formula (1.5). 
3. It should be noted that there are 10଺  bits in one megabyte. 
 
Questions I.1.3. 
1. What are the properties of the function for computing entropy? 
2. What is the principle of additivity of entropy? 
3. What is the term that measures uncertainty? 
4. Is the relationship between volume and probability units of information 

unambiguous? 
5. Why the Hartley formula? 
 
Tests I.1.3. 
1. What is the minimum indivisible unit of volumetric measurement of 

information? 
A) Terabyte; 
B) Byte; 
C) Megabyte; 



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

17 
 

D) Gigabyte; 
E) Bit. 
 
2. What is the magnitude of the uncertainty measurement for Chenon? 
A) Ectropion; 
B) Entropy; 
C) Value; 
D) Information; 
E) Byte. 
 
3. What is the Hartley formula? 
A) ܪ =   ;ଶܰ݃݋݈

B) H = lg N; 

C) H = ln N; 

D) H = ln (N–1)/2; 

E) ܪ = ݈݊(ܰ − 1)ଶ. 
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I.2. Types and types of data 

I.2.1. Constant and variable types of data 

In Computer Science, the concept of "Information" is often replaced by the 
concept of "Data", while the information message is treated as a data name, and 
the value of information is treated as a data value. 

The data, depending on the ways of giving values to their names, are 
divided into constant data (constant) and variable data (variables). 

If data values are determined during the construction of common rules for 
interpreting the used communication language, then such data will be 
permanent. In other words, when naming a constant, its values are 
simultaneously determined. Together with the value, the type of constant 
becomes known. For example, if the chain 135, formed from digits 1, 3, and 5, 
is treated as a constant name, then this value will be an integer "one hundred 
and thirty-five". If you construct another chain 315 from the same numbers, 
then it will be the name of the constant with the value "three hundred and 
fifteen", which are an integer. 

This implies the following statement: the names, values and types of 
constants do not change, they are determined simultaneously. 

If data values change during their processing, then such data will be 
variable. The type of the value of the variable must not be changed. Otherwise, 
when processing this variable, there will be difficulties associated with the 
incompatibility of the data types involved in the processing. 

In computer science, the term "identifier" is used to name a variable. 
An identifier is a chain with a limited length that starts with a letter and 

consists of letters and numbers. 
The value of a variable is described by its type, which uniquely identifies: 
A) the admissible values that an object of the described type can have; 
B) permissible operations that can be applied to an object of the type 

described. 
In general, data values are divided into numerical, symbolic and logical 

types. 
To process data, you must apply operations to this data. And in order to 

apply operations you need to know their definitions, notations and properties. 
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The operations, depending on what types they are defined, are divided into 
numeric operations, character operations, and logical operations. 

It should be noted that any of these operations is defined and investigated 
in various sections of mathematics. For example, all symbolic operations are 
defined in the section "Mathematical Linguistics", which explores the 
composition and properties of languages, all logical operations are defined in 
the section "Mathematical Logic", and all numerical operations are in other 
sections of mathematics (arithmetic, algebra, etc.). 

You can define the properties of the operations defined on each data type. 
These properties are grouped and form an axiomatic with respect to these data. 

In the proposed axiomatics intended for data of various types, there are 
many similarities. They show equivalence, including regularities such as 
commutativity, associativity and distributivity. 

Such patterns simplify the complex expression, reducing the number of 
operations, and facilitate its calculation. 

 
Examples I.2.1. 
1. N12B is the identifier. 
2. 7X is not an identifier, because it starts with the number 7. 
3. A + B is not an identifier, since there is a "+" sign in it. 
 
Tasks I.2.1. Will these data be identifiers? 
1. A-B; 
2. XY; 
3. C6R7. 
Help: 
The identifier begins with a letter and consists of letters and numbers. 
 
Questions I.2.1. 
1. What types of data are available? 
2. Why do I need an identifier? 
3. What is the difference between constant and variable data? 
 
Tests I.2.1. 
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1. What is the concept of replacing information? 
A) Data; 
B) Identifier; 
D) The message; 
C) Presentation; 
E) Definition. 
 
2. Which data does the name, value, and type do not change? 
A) Constant data; 
B) Certain data; 
D) Variable data; 
C) Not exact data; 
E) Uncertain data. 
 
3. How is the data divided according to the way the value is assigned? 
A) Constant and variable data; 
B) Persistent and non-permanent data; 
C) Variables and non-persistent data; 
D) Unstable and accurate data; 
E) Valid and non-permanent data. 
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I.2.2. Numeric data types 

A numeric type is formed from a set of numbers, operations on these 
numbers and the properties of these operations. They are divided into three: 
integers, real numbers and complex numbers. 

Note I.2.2: 
In computer science, the processing of numeric data may require different 

number systems. The basis of such systems can be 2,3,4, .... The difference 
between them is only in the methods of denoting the values of numbers, but the 
types of operations on numbers and their properties will be the same. 
Therefore, first consider a well-known to us the notation of numbers in the 
decimal number system, operations on them and the properties of these 
operations, since everything said, connected with the decimal number system, 
also applies to numbers in another number system. The integers are represented 
by Arabic numerals, before their negative values the sign "-" is written, and 
before positive values the sign "+" can be written. 

Real numbers, depending on the mode of representation, are divided into 
two groups: real fixed-point and real floating-point. 

The representation of real with a fixed point consists of a whole and 
fractional parts. The whole part is placed before (on the left side) by a 
fractional part and they are separated by a "." Sign, called a decimal point. 
Before them, to indicate the positivity or negativity of their values is written 
"+" or "-". Both parts are represented by Arabic numerals. 

The representation of real floating points consists of parts called mantissa, 
the basis of the number system and order. The values of the mantissa, the base 
of the number system and the order can be positive or negative. To indicate 
them, "+" or "-" is written before the values. The order is represented as an 
integer, and the mantissa is represented as a real number with a fixed point. 

If we denote the mantissa by M, the order of p, the basis of the system of 
contraction by q, then the real numbers are as follows: 

pqM * . 
To understand what was said in Table I.2.2, examples of real numbers with 

floating point are examined. 
Table I.2.2. Examples of floating-point real numbers. 
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The same number in a floating-point form can be represented by many 

records. For example, the same number 3.14 can have the following entries:
  21012 10*.0314.010*314.010*14.310*4.3110*.314 To have a single entry to 

represent a real floating-point number, you need to normalize it. For this, the 
following condition must be fulfilled:  

11  Mq  , 

where M is the absolute value. 
For example, real numbers with a floating point 210*64.13  and  

510*00617.0  in the normalized form will be:  
 

410*1364.0  and 710*617.0  . 
 

Complex numbers 410*1364.0  and 710*617.0   are represented in the form 
of an algebraic sum of their parts: the first (left) summand is the real part, the 
second (right) summand is the complex part. The real part and complex part of 
the complex number are written in the form of real numbers. To distinguish 
them after the complex part, the lowercase Latin letter "i" is put as its sign. 

 
Examples I.2.2. 
1. 3.14 is a positive real number with a fixed point, the whole part is 3, and 

the fractional part is 14. 
2. +5 is a positive integer 5. 
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3. 0.2 is a positive real number with a fixed point, the whole part is 0, and 
the fractional part is 2. 

4. -1.001 - a negative real number with a fixed point, an integer part of 1, 
and a fractional part of 001. 

5. 0.0 - positive real number, integer part 0 and fractional part 0. 
6. 0 + 3i is a positive complex number, the real part is 0, and the imaginary 

part is 3. 
7. -3.14 + 2i - negative complex number, real part -3.14, and imaginary 

part 2. 
8. - 0.12i is a positive complex number, the real part, and the imaginary 

part is 0.12. 
 
Tasks I.2.2. 
Determine real floating-point numbers and complex numbers: 

1) 40.23; 
2) i510*21.1 2  ; 
3) 210*3.3  . 

 
Help: 
1) A real number with a fixed point consists of an integer and fractional 

parts. 
2) The complex number has a real part and an imaginary part, at the end of 

which the lowercase Latin letter i is written. 
3) A real number with a floating point has a base of the number system, a 

mantissa and an order. 
 
Questions I.2.2. 
1. What types of numerical data are available? 
2. Which groups are divided into real numbers, depending on the form of 

their presentation? 
3. What parts consist of complex numbers? 
 
Tests I.2.2. 
1. What should I use to normalize real numbers? 
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A) 11  Mq ; 

B) 11  Mq ; 

C) 11  Mq ; 

D) 11  Mq ; 

E)  Mq 1
. 

 
2. What is the real part for 0 + 3i, and what is the imaginary part? 
A) Actual part i, imaginary part 3; 
B) Real part 0, imaginary part 3; 
C) Actual part 3, imaginary part i; 
D) The real part i, the imaginary part 0; 
E) The real part 0, the imaginary part of i. 
 
3. What numbers represent any integer? 
A) Latin numerals; 
B) Greek numerals; 
C) Kazakh numerals; 
D) Russian figures; 
E) Arabic numerals. 
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I.2.3. Numerical operations and their properties 

Operations defined over numeric types are known to us from school as 
arithmetic operations: addition, subtraction, multiplication, division. They are 
indicated by the signs "+", "-", "*", "/", respectively. Using these operations, 
you can build numerical expressions. Usually, for writing numeric expressions, 
we use an infix entry in which operation characters are written between 
operands (arguments). For example, if for any numbers a and b there is a third 
number that is the sum of these numbers, then we will write it as a + b. 

When calculating the values of numerical expressions, it is necessary to 
take into account the priorities (execution order) of these operations: first, high-
priority operations, multiplication and division, then low-priority operations 
addition and subtraction. Sometimes, parentheses are used to change the order 
of operations. In one expression, you can use several parentheses and you can 
write them inside each other while the operation in the innermost bracket and 
in the leftmost bracket is performed first. 

There are also non-skewed ways of writing numeric expressions, called 
prefixes and postfix records. In the prefix record, operation signs are written 
before their operands, and in postfix entries, the operation signs are after their 
operands. For example, the numeric expression in the infix record (x+3)*(y-2) 
is written in the prefix entry as * + x 3 - y 2, and in the postfix record as x 3 + y 
2 - *. 

Note I.2.3: 
1. The rules (but not the order) of performing these operations on different 

types will be different, even though they are designated identically. For 
example, the rule of summing integers is not suitable for adding real numbers. 

2. Prefix record and postfix recording of an arithmetic expression, in honor 
of their author, the Polish mathematician Jan Lukashevich, are called a direct 
Polish record and a reverse Polish record, respectively. 

Let a, b, and c be any numbers and let a be the inverse of a. Then 
operations on the numbers "+" - addition and "*" - multiplication have the 
properties shown in Table I.2.3. 

 

Table I.2.3. The properties of numerical operations. 
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№ Axiom Description 
1 a+ b  b + а Commutative law 
2 а*b  b*а  
3 а + (b+с) (а+ b)+ с Associativity law 
4 а * (b * с) (а* b)* с  
5 а * (b+с) а*b +a* с Distributivity law 
6 (а+b)*с  а*c +b* с  
7 а+ 0  0 + а= а Addition 

properties 8 а+ (-a)  (-a) + а= 0 
9 а*1  1* а= а Multiplication 

properties 10 1**,0 11   aaaaa  
 
Axiom 8 says that for every number a there exists an opposite number -a, 

and axiom 9 - for every nonzero number a there is an inverse number. 
 
Examples I.2.3. 
1. 5* b+с  5*b +5* с; 
2. 3+ (–3)  (–3) + 3= 0; 
3. (4 + 8)/2+(5+ 3)*2  12/2+8*2 6+16 = 22. 
 
Tasks I.2.3. 
1. Find the opposite number to the number 6; 
2. Calculate 2*a+3*b for a=5 and b=8; 
3. Calculate (a + 5) * (3 * b) for a = 10 and b = 2. 
 
Help: 
1. ;1** 11   aaaa  
2. Take into account the order of execution of transactions; 
3. Take into account the order of execution of operations and brackets. 
 
Questions I.2.3. 
1. What is a prefix entry? 
2. What is an infix entry? 
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3. What is postfix recording? 
 
Tests I.2.3. 
1. Find the law of commutativity? 
A) a+ b  b + а; 
B) а + (b+с) (а+ b)+ с; 
C) а+ 0  0 + а= а; 
D) а*1  1* а= а; 
E) а * (b+с) а*b +a* с. 
 
2. Find the law of distributivity? 
A) а + (b+с) (а+ b)+ с; 
B) а * (b+с) а*b +a* с; 
C) а+ 0  0 + а= а; 
D) а*1  1* а= а; 
E) a+ b  b + а. 
 
3. Find the law of associativity? 
A) а * (b+с) а*b +a* с; B) а + (b+с) (а+ b)+ с; 
C) а+ (–a)  (–a) + а= 0; 
D) а*1  1* а= а; 
E) a+ b  b + а. 
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I.2.4. Character data type 

A symbolic type is formed from a set of alphabet character chains of a 
given communication language. In computer science, the alphabets are 
composed of a group: letters, numbers and special signs. 

Among the letters can be lowercase and uppercase letters. Sometimes to 
the alphabet of one language can be added letters of the alphabet of another 
language . For example, in the alphabet of modern Kazakh language, there are 
letters of the Russian: ё,э,ю,я, ц, ч, щ, ь, ъ. 

As digits are taken arabic numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 
Special signs include signs of used operations, punctuation marks, 

grouping marks (brackets), a space mark, etc. 
The values of the character data are enclosed in character brackets. The 

symbol for the apostrophe       « ' ». is used as the symbol bracket. For 
example, 'АВС', '2015', 'X+1 > 0', '(3,14)'. 

So, the value of the character data is represented by a chain of letters, 
numbers or special characters enclosed in character brackets. You can 
determine the length of each chain: it is equal to the number of characters in 
this chain. The length is denoted between two vertical lines "| ". For example, 
the lengths above the given symbol values are represented as: 

||АВС| = 3, |2015| = 4, | X+1 > 0| = 5, |(3,14)| = 6. 
The abstract value "empty chain" is included in the set of character data. 

As part of the empty chain, there is not a single symbol. Usually an empty 
chain is denoted by the sign "ε". The length of the empty chain is zero, |ε | = 0. 

Note I.2.4. 
A space is not an empty chain, it is considered a real symbol. The length of 

the space is one, | | = 1. 
Examples I.2.4: 
1) 'ABCDE' is a chain formed from the initial letters of the Latin alphabet. 
2) 'X + Ү = 100' is a chain formed from mixed signs. 
3) 'Al' is a chain formed from a Latin letter and a digit. 
 
Tasks I.2.4. 
Determine the type of the following chains: 
1. 'ABC'; 
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2. '2013'; 
3. 'X + Y> 1'. 
 
Questions I.2.4. 
1. What does the length of character data mean? 
2. What is the length of the symbol chain 'ABCD'? 
3. What is the length of the empty chain? 
 
Tests I.2.4. 
1. From which groups are alphabets of communication languages used in 

computer science? 
A) Consists of a group of letters, numbers and special signs. 
B) Does not consist of a group of letters, numbers and special signs. 
C) Consists of a group of numbers and special signs. 
D) Consists of only a group of special signs. 
E) Consists of only a group of letters and numbers. 
 
2. Which chain consists of mixed signs? 
A) '210'; 
B) 'ABC'; 
C) 'X + 1> 0'; 
D) '( )'; 
E) '96'. 
 
3. What is the length of the chain |ABCDFHTRY| ? 
A) 0; 
B) 1; 
C) 10; 
D) 9; 
E) 11. 
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I.2.5. Symbolic operations and their properties 

All operations on character data are basically divided into two groups: 
1) Construction operations that allow one character chain to be obtained 

from the given two character chains; 
2) Division operations that allow a symbol or part of this chain to be 

removed from a given character chain, depending on the specific condition. 
The simplest operation of construction is the operation concatenation 

(coupling), it is denoted by the sign "•". For chains X and Y, it is defined as 
follows: after the right value of X is bound to the value of Y, we obtain a chain 
Z and write it as X • Y = Z. For example, if the value of X is 'KAZAKH', and 
the value of Y is 'STAN', then the value of Z is ' KAZAKH'STAN'. In some 
languages, the sign of this operation is not recorded. 

The operation of construction involves the operation disjunction (choice), 
denoted by the sign "". For example, if  A = 'ALMATY',                            B = 
'ASTANA', then C = AB = 'ALMATY'  'ASTANA'. 

Another operation of construction is the iteration operation, it is denoted 
by the "*" symbol. This operation is a derivative (complex), which is defined 
through operations concatenation and disjunction. For example, for any 
character data X, you can define: 

 
where  

n

n XXXX  . 

To properly construct a symbolic expression using construction operations, 
you need to know the order in which they are executed. The following order is 
established: the first is the iteration operation "*", the second is the 
concatenation operation "", the third is the operation disjunction "". 
Parentheses are sometimes used to indicate the order of operations. For 
example, for these two expressions 010* and (0(1(0*))) the values are the 
same. 

The simplest operation of division is the operation of removing from a 
given chain a certain number of characters starting at the specified location. If 
the name of the operation division is denoted by DEL, then we can write the 
deletion of the symbols from the chain X in the number M, starting from the 
position K in the form of the function: 
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DEL(X, K, M) = Y, 
Where the succession of the chain Y is obtained after removing M symbols 

from the value of X, starting from the position of K, then we can write 
Let ,  and   be arbitrary nonempty character data and ε an empty chain. 

Then the properties of the construction operations defined over the symbol 
data, "•" - concatenation, "" - disjunction and "*" - iteration are shown in Table 
I.2.5. 

Table I.2.5. Properties of character operations. 
№ Axiom Description 

1 ε = ε =  The commutativity law for 
empty chains 

2    =    The commutativity law for 
non-empty chains 

3  ≠  The noncommutativity law 
for non-empty chains 

4 () = () The law of associativity 

5  (  )=( )   The law of associativity 

6 (  )=   The law of distributivity 

7 ( )=   The law of distributivity 

8  =  The reduction law 

9 (*)*=* The reduction law 

10  The iteration law 

11 + = * The iteration law 

 
1. The chain α is a prefix (the beginning) of the chain β if there is a chain ξ 

such that the equality β = αξ holds. If we denote by α⪽β the relation "the chain 
α is a prefix of the chain β", then its formal definition can be written as 

 
2. The chain α is the suffix (end) of the chain β if there is a chain ζ such 

that β = ζα. If we denote by β⪾α the relation "chain α is a suffix of the chain 
β", then its formal definition can be written as 
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3. The chain α is a subchain of the chain β if there are chains ζ and ξ such 

that the equality β = ζαξ holds. If we denote by α⊆β the relation "chain α is a 
subchain of β", then its formal definition can be written as 

 
 
Examples I.2.5. 
1. If the value of X is 'ALTYNBEK', K = 1, and M = 5, then 
DEL(X, K, M) = DEL('ALTYNBEK', 1, 5) = 'BEK' 
2. If the value of X is 'ALA', and the value of Y is 'TAU', then X • Y = 

'ALATAU' ≠ Y • X = 'TAUALA'. 
3. If the value of X is ' LONDON', K = 4, M = 3, then 
DEL(X, K, M) = DEL(' LONDON', 4, 3) = 'DON'. 
4.  
5.  
 
Tasks I.2.5. 
1. If A = 'ALA', B = 'TAU', then A • B = ?, 
2. If X = 'STRASBOURG', K = 6, M = 5, then  DEL (X, K, M) = ? 
3. If X = 'BERLIN', Y = 'BER' then Х Y or Y Х? 
Help: 
1. You need to know the construction operations; 
2. It is necessary to know the operations of division; 
3. You need to know the relationship over the chains. 
Questions I.2.5. 
1. How many groups of operations are defined over the symbol data? 
2. What operations determine the operation of iteration over the symbol 

data? 
3. What is such an empty chain? 
 
Tests I.2.5. 
1. If A = 'SHYM', B = 'KENT', then A•B =? 
A) SHYMKENT; 
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B) SHYM; 
C) KENT; 
D) KENTSHYM; 
E) THE SHYN. 
 
2. If X = 'COPENHAGEN', K = 6; M = 5, then  DEL(Х, К, М) = ? 
A) HAGEN; 
B) COPEN; 
C) COP; 
D) HAG; 
E) OPEN. 
 
3. What kind of axiom is    =   ? 
A) Non-commutativity for non-empty chains; 
B) Commutativity for empty chains; 
C) The law of distributivity for empty chains; 
D) The associativity law for empty chains; 
E) Commutativity for non-empty chains. 
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I.2.6. Boolean data type 

A logical type consists of logical values. The logical values are "true" and 
"false". 

Boolean values are given in the following form: 
1) "true" or "yes" or "1" or "+"; 
2) "false" or "no" or "0" or "-". 
These values are the results of certain conditions. Such conditions include 

statements that take the values "truth" or "lie," and questions that require 
answers "yes" or "no." Examples of logical values are the values of messages 
from rows 1, 2 and 3 in Table I.1.2. 

In different literary sources, instead of a logical value (logical constant), 
"false" and "no" use "false", "non" or "0", and instead of a logical value (a 
logical constant), "true" and "yes" - "true" , "Yes" or "1". Therefore, in the 
sequel, for convenience only 0, 1 can be used as logical values. Then we 
assume that any logical variables take values from the set {0, 1}. 

The simplest condition is formed by the comparison operation 
(relationship): "<" - "less"; «=» - «equal»; ">" - "more"; "≤" is "less than or 
equal to"; "≥" is "greater than or equal to". 

To build a complex condition, you need to use logical operations defined 
over logical values. Types of such operations and their properties will be 
considered below in the section "Logical operations and their properties". 

 
Examples I.2.6. 
1. The simple condition "2 less than 5" has the meaning "true". 
2. The simple condition "1 equals 3" has the meaning "lie". 
3. The simple condition     "A is less than or equal to 7"      will have the 

value "true" or "false" depending on the value of the numerical variable A. 
 
Tasks I.2.6. 
Determine the value of "true" or "false": 
1. 15 = 20; 
2. 2> 12; 
3. 7 <14. 
Help: 
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A logical value is the result of a certain statement that takes the values 
"true" or "false", or questions that require "yes" or "no" answers. 

 
Questions I.2.6. 
1. Values that define a logical type? 
2. How is the opposite logical value defined? 
3. What is the meaning of the statement "It's not true that the computer is 

smarter than a person"? 
 
Tests I.2.6. 
1. Determine the logical value 45 = 60? 
A) Lies; 
B) Truth; 
C) Approximately; 
D) Equal to; 
E) Imaginary. 
 
2. Determine the logical value 17 <48? 
A) Truth; 
B) Falsehood; 
C) Approximately; 
D) Equal to; 
E) Imaginary. 
 
3. Determine the logical value -12≥0? 
A) Truth; 
B) Falsehood; 
C) Approximately; 
D) Equal to. 
E) Imaginary. 

I.2.7. Logical operations and their properties 

Logical operations are diverse. We among them will consider the most 
simple. This operation is not, and, or. Using these operations, you can define 
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any complex logical operation, i.e. They allow you to build any complex 
logical expression (condition). 

Depending on the language of communication, the logical value, 
comparison operations (relations), and the designations of logical operations 
may be different. For example, 

1) Comparison operations (relations): 
"," - "less"; 
 «=» - «equal»; 
">" - "more"; 
2) Logical operations: 
"" - "inversion" or "no"; 
"&" or "" - "conjunction" or "and"; 
"|" or "" - "disjunction" or "or". 
 
In any logical expression, logical relationships must be performed before 

logical operations, and among the logical operations of the first one, the 
operation "inversion", then the operation "conjunction", and at the end the 
"disjunction" operation. 

Values (models) of logical operations can be determined using truth tables. 
For example, if the logical variables A and B are given, then the logical 
operations can be defined as follows: 

 
1. Inversion (no): 

А А 
0 1 
1 0 

 
If the value of the logical variable A is "false", then its negation will be 

"true" and vice versa. 
 
2. Conjunction (and): 
 

А В АВ 
0 0 0 
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1 0 0 
0 1 0 
1 1 1 

 
The result value will be "true" if and only if both variables A and B take 

the value "true", otherwise the result has the value "false". 
 
3. Disjunction (or): 

А В АВ 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
The result value will be "false" if and only if both variables A and B take 

the value "false", otherwise the result has the value "true". 
Before discussing the properties of logical operations, consider 

comparison operations that are defined over any types of data. A comparison 
operation can be defined between quantities or data measurements and their 
distinguishable characteristics. 

Comparison operations have many kinds. But, despite this, the results of 
all comparison operations can be represented using the logical values "true" 
and "false". In addition, all comparison operations have common properties. 

Let R be a comparison operation defined over the data a, b, c. Then the 
operation R has the following properties: 

1) reflexivity if for each a, aRa; 
2) transitivity, if for each a, b and c of aRb and bRc, aRc follows; 
3) symmetry, if for each a and b from the execution of aRb follows the 

execution of bRа. 
Now, instead of R, we will use well-known notations "<" - less, "=" - equal 

and ">" - more and write the following properties: 
1. For any data a and b, the operation a < b, a = b or a > b will be in only 

one comparison: 
2. If a> b and b> c, then a> c. 
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3. If a= b and b=c, then a=c. 
4. If a <b and b <c, then a <c. 
Let p, q, r be arbitrary logical data and 0 - false, 1 - true. The properties of 

logical operations are given in Table I.2.7. 
Table I.2.7. Properties of logical operations. 

№ Axiom Description 

1 pq ~ qp The law of commutativity 

2 pq ~ qp The law of commutativity 

3 p(qr) ~ (pq)r The law of associativity 

4 p(qr) ~ (pq)r The law of associativity 

5 p(qr) ~ (pq)(pr) The law of distributivity 

6 p(qr) ~ (pq)(pr) The law of distributivity 

7 (pq) ~ pq De Morgan's Law 

8 (pq) ~ pq De Morgan's Law 

9 (p) ~ p The law of double negation 

10 p ~ p The law of identity 

11 pp ~ 1 The law of exclusion of the third 

12 pp ~ 0 The law of contradiction 

13 pp ~ p Conjunction property 

14 p1 ~ p  

15 p0 ~ 0  

16 p(pq) ~ p  

17 pp ~ p Disjunction property 

18 p1 ~ 1  
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19 p 0 ~ p  

20 p(pq) ~ p  

 
Examples I.2.7. 
1. In the expression АВ  С, first В, then В  С, and at the end А 

В  С. 
2. In the expression А = 0  В > 1, the comparison operation A = 0 and B 

> 1 is performed first, then the logical operation . 
3. In the expression (А = 0)  В = 1, the comparison operation A = 0 and 

B = 1 is performed first, then the logical operations , . 
 
Tasks I.2.7. 
In this expression, perform operations and determine its logical value. 
1) (1 < 2)  1=3  2 <5; 
2) 1>3  1<2; 
3) 1<3  5=7; 
Help: 
Among the logical operations of the very first operation is the operation 

"inversion", then the operation "conjunction", and at the very end the 
"disjunction" operation. 

 
Questions I.2.7. 
1. What logical operation is denoted by the signs            «», «»? 
2. What values have empty places in this table? 
 

А В АВ 
0 0  
0 1  
1 0  
1 1  

 
Tests I.2.7. 
1. Which logical value (0 or 1) will have a logical expression 2>5  2<6? 
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A) 2; 
B) 1; 
C) 5; 
D) 6; 
E) 0. 
 
2. What order of operations in the expression  
DF  G? 
A) first F, then F  G, and at the end D F  G. 
B) first F  G, and at the end D F  G. 
C) first F, and at the end D F  G. 
D) first F, then F  G. 
E) first G, then G  D, and at the end D F  G. 
 
3. Which of them is De Morgan's law? 
A) (p)  p; 
B) p  p; 
C) (pq)  pq; 
D) pp  0; 
E) pp  1. 
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I.3. Coding Information 

I.3.1. Coding of logical and symbolic information 

In paragraph I.1.1, a representation of a discrete information message was 
shown through the alphabet symbols of a certain language (notation), which is 
very important for receiving, presenting, storing, processing and transferring 
information using a computer. 

It should be noted that a person can distinguish characters by their 
outlines, and a computer only by their codes consisting of sequences 0 and 1, 
since the physical storage devices in the computer (memory cells and registers) 
can only be in two states that are correlated 0 or 1. Using a number of similar 
physical devices, you can store any information in the computer's memory with 
the help of binary code in the form of sequences 0 and 1. Therefore, the 
notation of any (numerical, text, logical, graphic, audio, etc.) The computer 
with which modern computers operate is coded (converted) into binary code, 
and decoded (converted back) into a notation to facilitate human perception. 

In a general sense, the encoding of information can be defined as the 
translation of information represented by a message in the primary alphabet 
into a sequence of codes. It must be understood that any data is somehow 
encoded information. Information can be presented in various forms: in the 
form of numbers, text, picture, sound, etc. Translation from one form to 
another is coding. 

Logical information that has only two values of "False" and "True", 
regardless of their notation, is represented in computer as 0 and 1, respectively. 

From paragraph 1.3.8 it is shown that using logical operations , &, ,  
denoting the words "not", "and" and "or" ", you can build any complex logical 
expression. 

In modern computers, all three logical operations , & and  are 
implemented in hardware with the help of basic logical elements of the 
computer. 

The basic logical elements of the computer, indicating their input and 
output, are shown in Figure 1.3.1.1: 
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Figure 1.3.1.1. Basic logical elements. 

When you enter symbolic information into the computer, its binary coding 
takes place, the character code is stored in the RAM, and when the symbol is 
output to the printer or to the computer screen, decoding takes place, i.e. The 
conversion of the symbol code into its image. 

The code for each character is specified by the index values in the code 
table of a two-dimensional array containing this symbol. In the code table, the 
encoding order is called the coding standard. That is, each standard defines its 
code table. Such standards include widespread ASCII, ANSI, Unicode and 
others. In the ASCII standard, each character takes 8 bits, i.e. = 256 characters 
or the corresponding binary code from 00000000 to 11111111. Values from 0 
to 127 are constant and form the main part of the table, which includes decimal 
digits, Latin letters (uppercase and lowercase), punctuation marks (dot, comma, 
brackets, etc.), as well as a space character and various service symbols 
(tabulation, translation of a line, etc.).The values from 128 to 255 form an 
additional part of the table, where it is customary to encode symbols of the 
national alphabets. To circumvent this limitation, the International 
Organization for Standardization (ISO) created a new character encoding 
standard, called Latin-1, which contained characters of European languages 
that were not part of the ASCII set. Microsoft expanded Latin-1 and named this 
ANSI standard. But ANSI still remained 8-bit encoding. Many languages have 
thousands of characters, especially languages such as Chinese, Korean and 
Japanese. 

In Kazakhstan, in 2002, the state standard for encoding the letters of the 
Kazakh alphabet in the 8-bit code table was adopted. Table 1 shows the second 
part of the 8-bit encoding table, where the letters of the Kazakh alphabet for 
Windows are located. 
Table 1.3.1. 8-bit table of the encoding of the letters of the Kazakh alphabet for 

Windows. 
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 0 1 2 3 4 5 6 7 8 9 A B C D E F 

8   ,  ,, ... †   ‰  <  Қ Һ  

 12
8 129 130 131 132 

13
3 134 135 136 137 138 139 140 141 142 143 

9  ‘ ’ “ ” • – —  ™  >  қ һ  

 14
4 145 146 147 148 

14
9 150 151 152 153 154 155 156 157 158 159 

A  Ұ ұ Ә ¤ Ө  §  © Ғ    ® Ү 

 16
0 161 162 163 164 

16
5 166 167 168 169 170 171 172 173 174 175 

B  ± І і ө µ ¶   № ғ  ә Њ њ ү 

 17
6 177 178 179 180 

18
1 182 183 184 185 186 187 188 189 190 191 

C А Б В Г Д Е Ж З И Й К Л М Н О П 

 19
2 193 194 195 196 

19
7 198 199 200 201 202 203 204 205 206 207 

D Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 

 20
8 209 210 211 212 

21
3 214 215 216 217 218 219 220 221 222 223 

E а б в г д е ж з и й к л м н о п 

 22
4 225 226 227 228 

22
9 230 231 232 233 234 235 236 237 238 239 

F р С т у ф х ц ч ш щ ъ ы ь э ю я 

 24
0 241 242 243 244 

24
5 246 247 248 249 250 251 252 253 254 255 

 
Here, in each cell, its decimal number and the character's outline are 

indicated, if it has an 8-bit encoding, and in uppercase and lowercase letters 
that indicate specific letters of the Kazakh language. 

To overcome the limitations of the 8-bit character encoding standard, 
Microsoft, in cooperation with companies such as Apple Computer, Inc., and 
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IBM, created a non-commercial Unicode consortium whose goal was to define 
a new standard for character encoding for international character sets. The 
work done in Unicode was combined with the work that was conducted in ISO, 
and as a result, in the early 90s of the XX century, a standard for encoding 
symbols, called Unicode, was developed. 

In Unicode, 31 bits are provided for character encoding (4 bytes, minus 
one bit). The number of possible combinations gives a prohibitive number: 231 
= 2,147,483,644 (that is, more than two billion). Therefore, Unicode describes 
the alphabets of all known languages, even "dead" and fictitious, includes 
many mathematical and other special symbols, even archaic symbols, such as 
the ancient Turkic runes, Sanskrit and Egyptian hieroglyphs, i.e. Unicode 
allows you to use almost any languages and symbols in the text. In its coding 
table there are codes of signs used in various branches of science and various 
decorative signs. However, the information capacity of the 31-bit Unicode still 
remains too large. Therefore, the abbreviated 16-bit version (216 = 65 536 
values) is more often used, where the first 128 codes coincide with the ASCII 
table. 

The first 16-bit version of Unicode (1991) was a 16-bit character set with a 
fixed character width. In the second version of Unicode (1996) it was decided 
to significantly expand the code area; To maintain compatibility with those 
systems where 16-bit Unicode has already been implemented, and UTF 
(Unicode Transformation Format) -16 was created, which is one of the ways to 
encode characters from Unicode as a sequence of 16-bit words. This encoding 
allows you to write Unicode characters. One character of the UTF-16 encoding 
is represented by a sequence of two bytes. Which of the two goes ahead, the 
older or the younger, depends on the order of the bytes. To determine the order 
of bytes, the byte order mark is used. 

Now consider an alphabetical approach to measuring information, in 
which any character sequence is considered a message of information. To 
determine the amount of such information, the length of its message is counted, 
without taking into account its value (content). 

Definition 1.3.1. The information volume of the message is the number of 
binary digits that is used to encode this message. 
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Let M be the number of characters of the initial alphabet in which the 
message is written, N is the number of characters in the message record. Then 
the information volume of the message is calculated by the formula: 

ܫ = ܰ ∙  (1)                                     ܯଶ݃݋݈
If ݈݃݋ଶܯ is not an integer, then it must be rounded up or found ݈݃݋ଶܯ෩,  

where ܯ෩  is the nearest integer power of 2 andܯ෩ >   .ܯ
The information volume of the message, expressed in bits, and the 

minimum number of bits required to write a message in a binary alphabet, are 
the same. 

Using n binary digits, you can encode all the elements of a set of 2௡ by a 
binary code. The information volume of one character of the alphabet denoting 
the element of the given set is n. 

 
Examples 1.3.1. 
1. With the help of these basic logical elements, NOT, AND, OR, you can 

build new logical elements: 
        AND-NOT                                        OR-NOT 

 
 
 
 
 
2. Any Boolean expression can be implemented on elements NOT-

AND (NAND). 

NOT:  ̅ܣ = ܣ̅˅ ܣ̅  = A˄Aതതതതതത                  AND:  A˄B =  തതതതതതതതതതതതܤ˄ܣ

 
 
 
 

3. Determine the information volume of the word "ASTANA", if we 
assume that the alphabet of the message consists of 10 letters. 

Decision. The length of this message is N = 6, the power of its alphabet is 
M = 10. By formula (1), we find ܫ = 6 ∙  ଶ10. Since the number 10 is not݃݋݈

˄ 
A

B

A

B V 
 

A˅Bതതതതതത A˄Bതതതതതത 

A A
˄ ˄ 

A

B ˄ 
A˄Bതതതതതത A˄B 
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equal to an integer power of 2, then the value of 〖log〗 _2 10 is rounded up 
or we find the value ݈݃݋ଶ10, where ܯ෩ - the nearest integer power of 2 and 
෩ܯ > 0, that ܯ෩ = 16. Then I = 6 ݈݃݋ଶ16 = 6 ∙ 4 = 24. Answer: 24. 

 
Questions 1.3.1. 
How is the logical information encoded? 
What is meant by a logical element? 
What are the standards for character encoding? 
How is the information volume of the information message calculated? 
 
Tasks 1.3.1. 
1. Construct a new scheme for the realization of the expression                  

ܺ =  .from the logical elements of NAND  ̅ܥ&തܤ&ܣ੦ܤ&ܣ̅
Help: the implementation of the operation ৾ is performed by a parallel 

connection with the same inputs, but different outputs. 
2. How much information is the message: "ASTANA - THE CAPITAL 

OF KAZAKHSTAN!". 
3. Determine the maximum number of pages containing 80 characters per 

line and 64 lines per page, which can contain a file of 10 KB in 8-bit encoding. 
4. Two texts contain the same number of characters. The first text is made 

up of 8 character alphabets, and the second one is 16. Determine how many 
times the amount of information differs in them. 

Help. 
Denote by x the number of characters in both texts, then the amount of 

information in the first text is 8x, and in the second text 16x. 
 
Tests 1.3.1. 
1. Determine the minimum number of bits for encoding 16 words in a 6-

character alphabet, if you use an 8-bit encoding. 
A) 768; 
B) 800; 
C) 1024; 
D) 516; 
E) 1540. 



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

47 
 

 
2. Determine the size of the alphabet, if the volume of the message 

compiled on it is 1024 characters and occupies 1 kilobyte. 
A) 256; 
B) 512; 
C) 1024; 
D) 2,048; 
E) 128. 
 
3. Determine how many times the amount of information differs in two 

texts, if they contain the same number of characters, but the first is written in 
16-bit, and the second is in 4-bit encoding. 

A) 4; 
B) 8; 
C) 24; 
D) 32; 
E) 2.  



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

48 
 

I.3.2. Number systems 

In general, the number system is a way of writing numbers using numbers 
and a set of rules. There are several ways to write numbers using numbers. 

Any number system must satisfy the following rules: 
 the ability to write the values of numbers in a given interval; 
 each sequence of digits defines only one numeric value; 
 ease of executable of the operations. 

All number systems are divided into: positional number systems and non-
position number systems. 

1. In the positional number system, the values of the digits depend on their 
place (position) in the number entry. If in a record of a number the same figure 
occurs several times, then it determines a different value. For example, the 
number is written in Arabic numerals: in the three-digit number 333, the 
leftmost digit 3 will be defined by three hundreds, the middle digit 3 - three 
tens, and the rightmost digit 3 - three units. 

2. In the non-position number system, the values of the digits do not 
depend on their place in the number entry. For example, writing a number 
using Roman numerals: in the record of the number LXXXVIII (eighty eight), 
the digit L stands for fifty, X for ten, V for five, and I for the number. 

The positional number system is characterized by its base of calculation. 
The basis determines the number of digits used in this system. For example, the 
number of digits in the decimal system is ten, in the octal system - eight, and in 
the binary system - two, etc. 

The capabilities of all positioning systems are the same. However, among 
them the decimal number system is the most common. That's the reason - in 
both hands there are ten fingers, which makes it easy and convenient to count 
to ten. Counting to ten and exhausting all the possibilities of the "computing 
tool", it is reasonable for the next position (second digit) to take the number 10 
(ten) as a new unit. Further, the decimal number ten will be the unit of the next 
position (the third digit) and so, continuing the calculations, the decimal 
number system appeared. 

However, the decimal number system did not immediately occupy a 
priority place in the calculations. In different historical periods, many peoples 
used non-decimal systems of scraping. For example, in ancient Turks the basis 
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of the number system is seven (1 week = 7 days, 1 girth = 7 span), in ancient 
Babylonians - sixty (1 minute = 60 seconds, 1 hour = 60 minutes, 1 degree = 
60 minutes), Englishmen - twelve (1 year = 12 months, 1 foot = 12 inches, 1 
shilling = 12 pence). 

In any positional number system with a base q, a given number A can be 
represented as follows: 

m
m

n
nq qaqaqaqaqaA 







   1
1

0
0

1
1

1
1)(  (1) 

Where ai is the number of digits used in the number system, n is the 
number of digits in the integer part, m is the number of digits in the fractional 
part (i = -m, ..., -1, 0, 1, ..., n-1). 

Among these number systems we need a decimal system of scaling and a 
binary number system. Table I.3.2 gives a binary equivalent for each decimal 
digit. 

Table I.3.2. Binary equivalent of decimal digits. 
Decimal digit  Binary digit 

0 0 
1 1 
2 10 
3 11 
4 100 
5 101 
6 110 
7 111 
8 1000 
9 1001 

From this table, you can notice that when you write the same number in a 
different number system, you will need a different number of characters 
(digits). For example, the two-digit number 16 in the decimal number system in 
the binary system will be 10 000, i.e. will require five characters. 

To translate a given integer with base p to a base q, it is necessary to 
divide this number several times by q until the remainder becomes less than q. 
The resulting quotient takes the number with the base q as the most significant 
digit, and as the values of the remaining digits, we need to take the remainders 
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in the direction starting from the last remainder to the first remainder and form 
the chain from left to right. 

To translate a given correct fractional number with a base p to a base q, 
multiply this number by q several times until the value of the fractional part bit 
is zero or until the specified precision is obtained. As the value of the bits of a 
regular fraction with a new basis q, it is necessary to form a chain from left to 
right in the direction starting from the first whole that appears to the last whole 
that appears. 

When translating mixed numbers, it is necessary to translate separately the 
whole and fractional parts into the new system according to the rules for 
translating integers and proper fractions, and then combine the two results into 
one mixed number in the new number system. 

The conversion of binary, octal and hexadecimal numbers to decimal 
notation is done according to the rule: 

To translate the number of the P system to decimal, the following 
decomposition formula should be used: 

ܽ௡ܽ௡ିଵ … ܽଵܽ଴ =  ܽ௡ܲ௡ + ܽ௡ିଵܲ௡ିଵ + ⋯ +  ܽଵܲଵܽ଴ܲ଴ 
The translate of octal and hexadecimal numbers to the binary number 

system and back is performed according to the rule: 
1. To translate a number from octal to binary, you need to write each digit 

of that number with a three-digit binary number (triad). In this case, 
insignificant zeros on the left for integers and on the right for fractions are not 
written. To reverse translate the translation of a binary number into an octal 
number system, the original number must be divided into the triads to the left 
and right of the comma and each group represented in the octal number system. 
The extreme incomplete triads are complemented by zeros. 

2. To convert a number from hexadecimal to binary, you must write each 
digit of this number with a four-digit binary number (tetrad). Note: 
insignificant zeros on the left for integers and on the right for fractions are not 
written. To reverse translate the binary number in hexadecimal notation, it is 
necessary to divide the original number into tetrads to the left and right of the 
comma and present each group with a digit in hexadecimal notationThe 
extreme incomplete tetrads complete with zeros. 
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Notes I.3.2: 
1) The number that is the basis of the smallest number system is equal to 

two, it is called the binary number system. The number in binary notation 
consists only of digits 0 and 1. 

2) The most common number system is the decimal number system, which 
consists of ten Arabic numerals: 0,1, 2, 3, 4, 5, 6, 7, 8, 9. 

3) Rules for performing operations in the binary system and in the decimal 
notation are similar. 

4) Properties of operations on binary numbers are identical with the 
properties of operations on decimal numbers. 

Examples I.3.2: 
1. Translate the number 11(ଵ଴)  into a binary number system. 

 
Answer: 11 (10) = 1011 (2). 

2. Translate the number 122(ଵ଴)   into the octal number system 

 
Answer: 122(10) = 172(8). 

3. Translate the number 500(ଵ଴)to the hexadecimal number system. 

 
Answer: 500(10) = 1F4(16). 

4. The conversion of the fractional number of 0.625 in the decimal 
number system to the binary number system will look like this: 

0, 625 
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* 2 
1, 250 

     * 2 
0,      500 

      * 2 
1, 000 

* 2 
0, 000 

Now, collecting from top to bottom, the obtained units of transition to the 
highest digits from the results of the execution of the chain of operations of 
multiplying the fractional part of a given number by the base of the translated 
number system (in our case 2), we get 1010, which means. 

5. The four-digit decimal number 1952 is expressed as follows: 
0123

)10( 10*210*510*910*11952  . 
 6. A decimal number with a three-digit integer part and a three-digit 

fractional part 596.174(ଵ଴) is expressed as follows:  

 321012
)10( 10*410*710*110*610*910*5174.596   7.  

7. The number of a binary system with a four-digit integer part and a three-
digit fractional part 1010.101(ଶ) is expressed as follows: 

3210123
)2( 2*12*02*12*02*12*02*1101.1010   8. Translate the 

number 57,24 (8) into the decimal number system. 
8. Translate the number 57,24(8) into the decimal number system. 

 
9. Translate the number 7A, 84(16) into the decimal number system. 

 
10. Write the number 16.24(8) in the binary system. 

 
11. Write the number 1110.0101(2) in the octal number system. 
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12. Record the number 7A, 7E(16) in the binary system. 

 
13. Write the number 1111010,0111111 (2) in the hexadecimal system. 

 
 
Tasks I.3.2. 
1. Translate the specified number of 10000001 binary system in decimal. 
2. Translate the specified number 129 of the decimal system to the octal 

number system. 
3. Translate the specified number 7A0 of the hexadecimal system to the 

decimal number system. 
Questions I.3.2. 
1. What is the number system? 
2. Which groups are divided into all the number systems? 
3. Is it possible to represent the same numerical value in a different 

number system? 
 
Tests I.3.2. 
1. What is the relationship between numbers in the positional number 

system? 
A) The value of the digits depends on their place in the record 
B) The meaning of the letters depends on their place in the record; 
C) The value depends on their form of writing the number; 
D) The place of the digits depends on their meaning; 
E). The meaning of the numbers depends on their recording; 
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2. What is the dependency in the non-positional number system? 
A) The value of the digits does not depend on their place in the record; 
B) The meaning of the letters does not depend on their place in the record; 
C) The value depends on their form of writing the number; 
D) Does not depend on the recording of a given number; 
E) The value of the digits depends on their place in the recording. 
 
3. What is the basis of the positional binary number system? 
A) 0 and 1; 
B) 2; 0 
C) 1 and 2; 
D) 10; 
E) 0. 
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II. SETS AND RELATIONS 

II.1. Types of sets and operations on them 

II.1.1. The concept of a set and operations on them 

The set is one of the primary concepts of mathematics, that is, those that 
are at the heart of the logical system and are no longer defined through other 
concepts. The set was developed at the end of the 19th century. Set theory is 
now the main part of mathematics, and can be used as a basis from which 
almost all mathematics can be obtained. 

When we talk about a set, we understand that a set is a set or set of 
elements united by some common attribute (property). Elements can be real 
physical or abstract mathematical objects. On the basis of this, we can give the 
following intuitive definition of the concept of a set: 

A set is the union of individual (discrete) elements selected by some 
criterion (criterion, type). 

The names of sets are denoted by uppercase Latin letters, and their 
elements by lowercase (small) Latin letters or Arabic numerals. In both cases, 
you can use indexes, including multi-level ones. 

 The notation a∈A (a∉A) means that the element a belongs (does not 
belong) to the set A. For example, let A = {1, 2, 3}: if a = 2, then we can write 
a∈A, and if = 5, then - a∉A. 

Sets can be described in various ways: by enumerating elements, by 
notifying the developer of a set, by interval recording, by plotting a graph on a 
number line and / or Venn diagrams. 

By enumeration of elements: Enumeration of elements is a list of elements 
in the set, separated by commas and surrounded by curly braces. For example: 

1) {2, 3, 4, 5, 6} is a list for the set of numbers from 2 to 6 inclusive; 
2) {1, 2, 3, 4, ...} is a list for the set of natural numbers, where three points 

indicate that their number continues in the same scheme by an indefinite 
number; 

3) a set of small Latin letters denoting the vowels of the English language 
is described as {a, e, i, o, u}. 

According to the developer's notation of the set: The notation of the 
builder of a set is a mathematical abbreviation for the exact declaration of all 
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elements of a certain set that have a specific property. In addition, you can use 
a colon (:) to represent the words "so, that". For example: 

1) The statement "all x, which are elements of the set of integers, such that 
x is between 2 and 6 inclusive." }62 :{  xZx  is a set of numbers from 2 to 

6 inclusive, Z is the set of integers; 
2) The statement "all n, which are elements of the set of natural numbers, 

such that n is less than the number 100". }100 :{  nNn  is a set of natural 

numbers smaller than the number 100, N is the set of integers; 
3) The statement "all x, which are elements of the set of integers, such that 

their values are greater than 0, positive. }0|{  xZx  is the set of all positive 

integers. 
On the recording interval: the interval is a connected subset of numbers. 

Interval designation is an alternative expression for the answer in the form of 
an inequality. Unless otherwise specified, we will work with real numbers. 

Among all sets there are two special sets: 
1. Ø is an empty set that does not contain any elements. 
2. U is a universal set (universe) containing all elements of the type 

(subject domain) under consideration. 
Concerning the theory of the universe, this set contains all the objects 

considered in this theory as elements. 
For example, the universe is: 
1) in the theory of numbers, the set of all integers; 
2) in the theory of languages, the set of all words in a given alphabet; 
3) in geometry, the set of all points of an n-dimensional geometric space. 
The cardinality of A is equal to the number of its elements and is denoted 

by |A|. Now you can define operations on sets: 
Suppose that two sets A and B are given, then the following operations can 

be defined over them: 
1. The union of the sets A and B consists of the elements A or B: 

A∪B = {x:  x∈A ∨ x ∈ B}. 
2. The intersection of the sets A, B consists of the elements A and B: 

A∩B = {x:  x∈A & x∈ B}. 
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3. The complement to the set A consists of the elements of the universe U and 
does not include elements of A: 

}.&|{ AxUxxA   

4. The difference between the sets A and B consists of the elements of the set A 
and does not include the elements B: 

A \ B= {x:  x∈A  & x∉B}. 
5. The symmetric difference of sets A and B consists only of elements of A or 
only of elements of B: 

A Bɰ={x:  (x∈A & x∉B) ∨ (x∈B & x∉A)}. 
6. The Cartesian (direct) product of sets A and B consists of all possible 
ordered pairs of elements A and B: 

A×B = {(a, b):  a∈A & b∈B}. 
Operations (1) - (3) can be represented using the Euler-Venn diagram (Figure 
I.2.1), in which the universe U is represented by a rectangle, and the sets A and 
B are circles. Hatching is used to highlight the result. 

 
Figure I.2.1. Euler-Wenn diargam. 

It is shown here that the sets A and B are subsets of U, and they are written 
as A ⊆ U and B ⊆ U (see I.2.2.). 

The operations (1) - (3) can be defined not only over two sets, but also 
over n sets ܣଵ, ,ଶܣ … ,  .௡  where n∈N & n>2ܣ

The union over the sets ܣଵ, ,ଶܣ … ,  :௡ is defined asܣ


n

i
in AAAA

1
21


 . 
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The intersection over the sets ܣଵ, ,ଶܣ … ,  :௡ is defined asܣ


n

i
in AAAA

1
21


  . 

The direct product over the sets ܣଵ, ,ଶܣ … , ௡ܣ  is defined as the set of tuples of 
the form (ܽଵ , ܽଶ , … , ܽ௡ ), ܽଵ ∈ ,ଵܣ ܽଶ ∈ ,ଶܣ … , ܽ௡ ∈  .௡, i.eܣ

ଵܣ × ଶܣ × … ௡ܣ × = {(ܽଵ , ܽଶ , … , ܽ௡ ): ܽଵ ∈ ଵܣ , ܽଶ ∈ ,ଶܣ … , ܽ௡ ∈  .{(௡ܣ
If If ܣଵ = ଶܣ = ⋯ = ௡ܣ  = then  AAAA ,ܣ n

n
  ... is a power. 

Now we can show the tabular method of specifying sets and operations on 
them. Let U, A ⊆ U and x∈U be given. 

An indicator (characteristic) function for a set A is a function ܫ஺(ݔ), define 
U, A ⊆ U и x∈U as: 








 Axif
Axif

xA ,0
,1

)(I  

In this way, }.1,0{: UI A  

For A ⊆ U and B ⊆ U, the following properties hold: 
;)()( BAxIxI BA   

;)()( BAxIxI BA   

);(1)( xIxI AA   

);()()()()( xIxIxIxIxI BABABA   

);()()( xIxIxI BABA   

);()()()(\ xIxIxIxI A BABA   

).()(2)()()( xIxIxIxIxI BABABA   

Indicators can be conveniently set using Table II.1.1. 
Table II.1.1. Indicators. 

Ax
 

Bx  BAx 
 

BAx 
 

BAx \
 

Ax
 

BAx 
 0 0 0 0 0 1 0 

0 1 1 0 0 1 1 

1 0 1 0 1 0 1 

1 1 1 1 0 0 0 
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Operations on sets have the following properties: 

I. Unification, intersection and difference: 
1) A∪Ø = A  the property of zero; 
2) A∪A = A  idempotency; 
3) A∪B = B, if all elements of A are contained in B; 
4) A∪B = B∪A is commutativity; 
5) (A∪B)∪C = A∪(B∪C) = A∪B∪C  associativity; 
6) A∩Ø = A  the property of zero; 
7) A∩A = A  idempotency; 
8) A∩B = A, if all elements of A are contained in B; 
9) A∩B = B∩A is commutativity; 
10) (A∩B)∩C = A∩(B∩C) = A∩B∩C  associativity; 
11) A∪(B∩C) = (A∪B)∩(A∪C)  is distributive; 
12) A∩(B∪C) = (A∩B) ∪ (A∩C) - distributivity; 
13) A∩ (B\C) = (A∩B) \ (A∩C) is distributive; 
14) A∪  = U  the complement property; 
15) A∩ = Ø  the complement property; 
16) - the law of de Morgan; 
17) is de Morgan's law; 

18) is involutive; 
19) A\ Ø = A the property of the difference; 
20) A\A = Ø  the property of the difference; 
21) A\B = A∩ = Ø the property of the difference; 
22) B\A = B∩ = B\ (B∩A) is the property of the difference; 
 
II. Symmetric difference and direct product: 
1) A Øɰ = A  the property of zero; 
2) A Aɰ = Ø  idempotency; 
3) A Bɰ = (A∪B) \ (A∩B)  the property of the symmetric difference; 
4) A Bɰ = B Aɰ  is commutativity; 
5) (A Bɰ) Cɰ = A (ɰB Cɰ) = A Bɰ Cɰ  associativity; 



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

60 
 

6) (A∪B)×C = (A×C) ∪ (B×C) is distributive; 
7) A×(B∪C) = (A×B) ∪ (A×C) is distributive; 
8) (A∩B)×C = (A×C) ∩ (B×C) is distributive; 
9) A×(B∩C) = (A×B) ∩ (A×C)  is distributive; 
10) (A\B)×C = (A×C) \ (B×C)  is distributive; 
11) A×(B\C) = (A×B) \ (A×C)  is distributive; 
 
Examples II.1.1. 
1. All non-negative integers form a set of natural numbers. 
2. D = {0, 1}, where only the listed constants 0, 1 are elements of the set D. 
3. X = {x: x> 0}, where only positive variables of x are elements of X. 
4. | Ø | = 0. 
5. If A = {a, b, c, d, e}, then | A | = 5. 
6. Let A = {a, b, c, d, e, f}, B = {c, d}, then: 

• B × B = {(c, c), (c, d), (d, c), (d, d)}; 
• A \ B = {a, b, e, f}; 
• A  ɰB = {a, b, e, f}; 
• depends on what will be the universe U. Suppose that  
if U = {a, b, c, d, e, f, h}, then = {h}. 

1. 7. Let A = {1, 2}, B = {a, b}, C = {+, -}. Then, using the distributivity 
(A∪B)∪C = A∪(B∪C) = A∪B∪C, one can obtain  ({1,2}∪{a,b})∪{+,} = 
{1,2}∪({a,b})∪{+,}) = {1,2}∪{a,b}∪{+,}. 

 
Tasks II.1.1. Let A = {1, 2, 4}, B = {3, 4, 5, 6}. Then perform the 

following operations: 
1) A∪t; 
2) A∪A; 
3) A∩B; 
4) A × B; 
5) A \ B; 
6) A∪; 
7) A  ɰB; 
8) (A∪B) × C; 
9) (A \ B) × C. 
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Questions II.1.1: 
1. How are sets given? 
2. What is a universal set? 
3. How are subsets determined? 
4. What is the Euler-Venn diagram? 
5. How is the direct product of sets determined? 
6. How is the difference of sets determined? 
7. How is the symmetric difference of sets determined? 
8. How is the indicator function of a set defined? 
9. Find out which of the following distributive laws are valid for any sets A, B, 
C: 

1) A \ (B∪C) = (A \ B) ∪ (A \ C); 
2) A \ (B∩ C) = (A \ B) ∩ (A \ C); 
3) A  ɰ(B∪C) = (A  ɰB) ∪ (A  ɰC); 
4) A  ɰ(B∪A) = (A  ɰB) ∪ (A  ɰC); 
5) A \ (B  ɰA) = (A \ B)  ɰ(A \ C); 
6) A∪BC = (A∪B) (A∪C); 
7) A∪ (B \ C) = (A∪B) \ (A∪C); 
8) A (B \ C) = AB \ AC; 
9) A∪ (B  ɰC) = (A∪B)  ɰ(A∪C); 
10) A (B  ɰC) = AB  ɰAC; 
11) A  ɰ(B \ C) = (A  ɰB) \ (A  ɰC)? 
Tests II.1.1: 
1. If D = {d | D is an integer and 0 ≤d ≤ 9, then what is | D |? 
A) 10 
B) 9 
C) 10 
D) 0 
E) 1 
 
2. What result will be obtained after performing the operation A∪B for 
given sets A = {a, b, c} and B = {b, d, e, f}? 
A) {a, b, c, d, e, f} 
B) {a, b, c} 
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C) {b, d, e, f} 
D) Ø 
E) {c, b, d, e} 
 
3. What result will be obtained after the operation A \ B for the given sets A 
= {a, b, c, r, q, e, x} and B = {z, e, x}? 
A) {a, b, c, d} 
B) {a, b, c, d, d, e} 
C) {r, e, x} 
D) {r, e} 
E) Ø  
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II.1.2. Relations and ways of representing them 

The concept of "Attitude" plays a very important role in many branches of 
science, especially in computer science, as it is used in the construction of any 
algorithm with which to solve a particular problem, for organizing branching or 
repetition. 

 
Definition II.1.2.1. If two sets A and B are given the same type, then the 

following relations can be made: 
1) A = B: A is equal to B if A and B consist of the same elements, i.e. A and 

B are subsets of one another; 
2) A ⊆ B: A is contained in B if all elements of A belong to B or A is equal 

to B, this means that A is a subset of B; 
3) A ⊂ B: A is strictly contained in B if all elements of A belong to B and A 

is not equal to B, that is, some elements of B do not belong to A, this means 
that A is a proper subset of B. 

Similarly, a relationship can be defined including A ⊇ B and strictly 
includes A ⊃ B. 

It is not difficult to see that the above relations =, ⊆ and ⊂ are subsets of 
the direct product A × B, that is, We can assume that any relation is a subset in 
the direct product, allocated by a certain law. 

Note that the empty set t is a proper subset of any finite set. 
 
Examples II.1.2.1: 
1) if A = {a, b, c}, B = {b, a, c}, then A = B; 
2) if A = {1,2,3,4}, B = {3,1,4,2}, then A ⊆ B; 
3) if A = {1,2,3}, B = {3,1,4,2}, then A ⊂ B 
Definition II.1.2.2. Let ܣଵ, ,ଶܣ … ,  ௡ be arbitrary sets, not necessarilyܣ

distinct. Then the n-ary relation on the sets  ܣଵ, ,ଶܣ … ,  ௡is a subsetܣ
ܴ௡ = ,ଵܣ ,ଶܣ … ,  ,௡ܣ

where n1, ܴଵ is a unary relation to ܣଵ, ܴଶ is a binary relation on ܣଵ,  ଶ, ܴଷ isܣ
a ternary relation to ܣଵ , ,ଶܣ  .ଷ, etcܣ
Every unary relation on the set A is a characteristic property of some subset of 
it. The set of all unary relations on A coincides with the set of all subsets of A. 

 



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

64 
 

Examples II.1.2.2: 
1. A unary relation }100&:{1

1
 nNnnR defines a set of natural 

numbers less than the number 100; 

2. A unary relation )}*2(:{1
2

knNknR  defines a set of even 

natural numbers; 

3. A unary relation )}*2(:{1
2

knNknR   defines a set of odd 

integers. 
 
Definitions II.1.2.3. A binary relation is defined over pairs of sets and can 

be represented in one of three ways: 
1) prefix record - the sign of the relation is inserted before the participants 

of the binary relation; 
2) infix record - the sign of the relation is inserted between the participants 

of the binary relation; 
3) postfix record - the sign of the relation is inserted after the participants 

of the binary relation. 
Binary relations over pairs of elements are often represented using tables: 

the rows correspond to the first elements of the pair, the columns correspond to 
the second elements of the pair, and the relationship between the specific 
elements of the row and column is marked with a special sign, for example, 
with a "1" or other symbol. 

 
Examples II.1.2.3: 
1. If a∈A and b∈B are in the binary relation R, then this can be written as: 
Rab - prefix entry; 
aRb - infix entry; 
abR - postfix recording. 
2. If the sets A = {a1, …, ar} and B = {{b1, …, bs} are in the binary relation 

R, then it can be represented using table I.2.2, in which the elements ai are 
represented by chains, the elements bj  columns, and the ratio aiRbj is marked 
"1": 
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Table II.1.2 shows the binary (binary) relation defined between two given 
sets A =  {a1, …, ar} and B = {b1, …, bs}. 

Table II.1.2. Binary relation. 
R b1 b2 … bs-1 bs 

a1 1  … 1  

a2  1 …   

… … … … … … 

ar-1 1  … 1  

ar   …  1 

 
Definitions II.1.2.4. It is said that the binary relation R on the set S: 
1) is reflexive if sRs holds for each s∈S; 
2) is transitive if for any s, t, u∈S from sRt and tRu follows sRu; 
3) is symmetric if for any s, t∈S from sRt follows tRs; 
4) is antisymmetric if from aRb and bRa follows a = b. 
 
Examples II.1.2.4: 
1. The ratio of numbers over numbers is not reflexive; 
2. Relations =, ≥,> over numbers are transitive; 
3. The ratio = over the numbers is symmetric. 
 
Definition II.1.2.5. A binary relation R is called an equivalence relation if 

it satisfies the properties of reflexivity, transitivity, and symmetry. 
To every equivalence relation on the set S there corresponds a unique 

partition of the given set into adjacent classes. 
 
Examples II.1.2.5. The ratio = in any numeric set is an equivalence 

relation, i.e. For any k, m, n∈N: 
1. Reflectivity: n = n. 
2. Transitivity: from k <m and m <n follows k <n. 
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3. Symmetry: from k = m follows m = k. 
 
Definitions II.1.2.6. A binary relation R on some set S that satisfies the 

properties of reflexivity, transitivity, and antisymmetry is called a partial order 
relation. 

 
Examples II.1.2.6. Partial relations are: 
1. The relation ⊆ for subsets of a set; 
2. The relation ⊇ for subsets of a set; 
3. Relation = on the set of integers; 
4. The relation ≤ on the set of natural numbers; 
5. The relation  on the set of integers. 
 
Definitions II.1.2.7: 
1. A partially ordered set is a set A with a partial order relation defined on 

it. More precisely, a partially ordered set is a pair <A, R>, where A is a set, and 
R is a partial order relation on A. 

2. Elements a and b of a partially ordered set A are said to be congruent 
with respect to the partial order R on this set if aRb or bRa holds. 

3. A partial order on a set A is called a linear order if any two elements a 
and b of A are congruent with respect to the partial order R. 

4. A linearly ordered set or chain is a partially ordered set in which the 
elements of each pair are comparable. 

5. The elements a and b of a partially ordered set A are called 
incomparable if no partial order relation is fulfilled between them. The 
possibility of the existence of incomparable elements explains the meaning of 
the term "partially ordered set". 

 
Examples 1.2.2.7: 
1. The set of natural numbers N with the relation "≤" is partially ordered, 

all natural numbers will be comparable with respect to the relation "≤", and N 
is a chain. 

2. The set of all real numbers with the relation "=" is a linearly ordered set 
if all real numbers are comparable with respect to the relation "=". 
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3. Let A be the set of real-valued functions on the closed interval [0,1] with 
the partial order relation <, =,> defined on it, then the elements f(x) = x and 
g(x) = 1-x will be incomparable. 

 
Definitions II.1.2.8. Let A be a partially ordered set, B its subset, i.e. A ⊇ 

B. Then: 
1) the lower bound (the supremum) of a set B in a set A is an element aA, 

such that a≤b (b ≤ a) for any bB; 
2) the element aA is called the smallest (largest) in the set A if a is the 

lower (upper) face of A itself; 
3) An element aA is called minimal (maximal) in the set A, if there is no 

bA such that b <a (a <b). 
The smallest (largest) element of A is its unique minimal (maximal) 

element. 
        
Examples II.1.2.8: 
1. The set of all subsets of A has the smallest element t and the largest 

element of A itself. 
2. The set N of natural numbers has the smallest element 1 and does not 

have the largest element. 
3. The set Z of all integers does not have the smallest, largest, minimal, 

and maximal elements. 
The elements of sets A and B are in one-to-one correspondence if each 

element a∈A by some law is associated with the same element b∈B, and each 
b∈B is mapped to the same a∈A. 

The sets A and B are equivalent (equipotent) if one can establish a one-to-
one correspondence between their elements. 

 
Note II.1.2.2. A binary relation can be given by a triple of sets <R, A, B>, 

where R⊆A × B is a graph of the relation and written (a, b) ∈ R or aRb. Then 
you can define: 

Domain of definition: Dom R = {x∈A:  ∃y∈B(x, y)∈R};  
Value range: Run R = {y ∈B:  ∃x∈A(x, y)∈R}; 
The inverse relation: 
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ܴିଵ = ,ݕ)} :(ݔ ܤ × :ܣ ,ݔ) (ݕ ∈ ܴ}; 
The composition of the ratio: R⊆A×B,  S⊆B×C, 
 R∙S={(x, z)∈A×C:  ∃y∈B [(xRy) &(ySz)]}. 
 
Definition II.1.2.9. A binary relation f⊆X×Y is called a function from X to 

Y if Dom R = X and      (x, y)∈f,  (x, z)∈f  ⇒ y=z. 
The function f: X → Y is called: 
1) surjective if for any y∈Y there exists x∈X such that y= f(x) , i.e.  ∀y∈Y 

∃x∈X(y= f(x)); 
2) injective, for any x1, x2∈X, from the fact that x x1≠x2  it follows that 

f(x1)≠f(x2), i.e. 
∀x1∈X ∀x2∈X (x1≠x2 ⇒ f(x1)≠f(x2)); 
3) bijective if it is surjective and injective. 
Any binary function can be associated with a ternary relation, for example, 

if a binary function f(x,y) is given, then it can be associated with the ternary 
ratio R3(x,y,z) so that z=f(x,y). 

 
Examples II.1.2.9. Let x, y, z∊N be positive integers and let f(x,y)=z be a 

binary function, then: 
1) if x is 3, y is 5, z is 8, and f is an operation of addition +, then instead of 

writing f(x,y)=z, we can write 3 + 5 = 8 and associate the ternary relation Add 
(3, 5, 8), for which 8 = 3 + 5 holds. 

2) if x is 8, y is 2, z is 4, and f is the division operation ":", then instead of 
writing f(x,y)=z, we can write 8:2 = 4 and associate the ternary relation Dev(8, 
2, 4), for which 4 = 8: 2 is valid. 

Clearly, for some x, y ∊N, the result of the division operation is not an 
integer, and for them the ternary relation Dev(x, y, z) does not hold. Therefore, 
for such cases it is necessary to determine additional conditions for the results. 

 
Definition II.1.2.10. A transitive closure of a relation R on a set A is the 

intersection of all transitive relations containing R as a subset (otherwise, the 
minimal transitive relation containing R as a subset). 
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A transitive closure exists for any relation. For this we note that the 
intersection of any set of transitive relations is transitive. Moreover, there 
necessarily exists a transitive relation containing R as a subset. 

Transitive closure has the following properties: 
1) The transitive closure of a reflexive relation is reflexive, because The 

transitive relation contains the original ratio; 
2) The transitive closure of a symmetric ratio is symmetric. Indeed, 

suppose there is a transitive relation aRb, then there exist x1, x2, …, xn such that 
aRx1, x1Rx2, …, xnRb. But from the symmetry of the relation R, it follows that 
bRxn, xnRxn-1, …, x1Ra, hence bRa. 

3) Transitive closure does not preserve antisymmetry, for example, for the 
ratio {(a,b), (b,c), (c,a)} on the set {a, b, c}. 

4) The transitive closure of a transitive relation is itself. 
The relation R*=R+∪R0, where R0={(ε, ε):  ε∈A}  is sometimes called a 

reflexive-transitive closure, although often by "transitive closure" is meant R *. 
Usually the differences between these relations are not significant. 

 
Examples II.1.2.10: 
1. For any a, b, c∈N, the relation a<b and b <c implies that a <c. 
2. For any x, y∈N, the relation y = x follows from the validity of the 

relation x = y. 
3. If A is a set of cities and the relation xRy is given, meaning "there is a 

bus route from x to y", then the transitive closure of this relation is the relation 
"there is an opportunity to get by bus from x to y". 

 
Tasks II.1.2.  
1. Let  A={a,b,c,d}, B={b,d}, С={с}. Determine: 
 A  ɰB; 
A × (B∪C); 
A × (B∩C); 
A∪ (B∩C). 
A \ (B∪C); 
(A \ B) ∩C. 
(A  ɰB) ∩ C; 
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2. Write out the ordered pairs belonging to the following binary relations 

on the sets A = {1,3,5,7} and В = {2, 4, 6}: 
(а) U = {{х, у): х + у = 9}; 
(б) V = {(x, у): х<  у}. 
3. Find all ordered pairs belonging to a relation that is defined on the set A 

= {1, 2, 3, 4, 5, 6} by the following set R = {(x, y): x is a divisor of y}. 
3. List the ordered pairs belonging to R if the ratio R is represented as in 

the lower figure. 
 
 
 
4. Determine which of the following relationships on the set of people are 

reflexive, symmetric or transitive: 
(A) "... has the same parents as ..."; 
(B) "... is a brother ..."; 
(C) "... older or younger than ..."; 
(D) "... not higher than ...". 
(D) "... older than his son ...". 
 
Questions II.1.2: 
1. What is the partial ordering of the set? 
2. How is the function determined? 
3. How is the composition of the relationship determined? 
4. What is the power of the union of two sets? 
5. What sets are equal? 
6. What elements are incomparable? 
7. What is the equivalence of two sets? 
8. What is the transitive closure of a relationship? 
 
Tests II.1.2: 
1. How many sets participate in a binary relation? 
A) 2 
B) 3 

1 

4 

2 

3 
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C) 4 
D) 0 
E) 1 
 
2. How does the relationship and direct work relate to each other? 
A) A relation is a subset of a direct product. 
B) The relation includes the direct product. 
C) The relation and the direct product intersect. 
D) A relation is an element of a direct product. 
E) The relation describes the direct product. 
 
3. What binary relation is an equivalence relation? 
A) If it is reflexive, transitive, and symmetric; 
B) If it is reflexive and symmetric; 
C) If transitive and symmetric; 
D) If it is reflexive and transitive; 
E) If it is reflexive, nontransitive, and not symmetric.  
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II.1.3. Numerical sets and intervals 

If only numeric values are elements of a set, then such sets are called 
numerical sets. Depending on the type of values of the elements, we will 
distinguish between numerical sets: the set of natural numbers, the set of 
integers, the set of primes, the set of rational numbers, the set of irrational 
numbers, the set of real (real) numbers: 

1. Natural numbers are the very first numbers that people began to use. 
Natural numbers can be used to count items and use as their numbers. The set 
of natural numbers is bounded from below and is not bounded from above. The 
smallest natural number is 1-unit. The set of natural numbers is denoted by the 
letter N;  

N = {1, 2, 3, ...}. 
2. Integers include natural numbers. The set of integers is denoted by the 

letter Z: 
Z = {..., -3, -2, -1, 0, 1, 2, 3, ...} = {0, ± 1, ± 2, ± 3, ...}. 
The set of integers consists of three subsets of negative numbers Z–, zero 0 

and a subset of positive integers Z+, which coincides with the set of natural 
numbers, i.e. Z+

 = N. 
3. Simple numbers. The set of prime numbers is denoted by the letter P. A 

prime number is an integer that is divisible only by itself and by one. Examples 
of prime numbers are 3, 5, 7, 11, 13, 17. Simple numbers are widely used in 
cryptography. 

5.Rational numbers. The set of rational numbers is denoted by the letter Q. 
A rational number is a fractional number, which is represented as p / q (where 
p is an integer and q is a natural number). For example, 1/3 is "one part of 
three", 0.25 is twenty-five hundredths. Decimal fractions can also be written as 
p / q. For example, 0.25 = 25/100 = 1/4. A rational number can have several 
different fractional representations. For example, 1/2 is equivalent to 2/4 or 
132/264. In the decimal representation, rational numbers take the form of finite 
or infinite periodic fractions. Integers (positive and negative) can also be 
written in the form p / q, i.e. In the form of a fraction with denominator 1, for 
example: 

2 = 2/1, 0 = 0/1, -5 = -5/1. 
Thus, the set of rational numbers includes the set of integers. 
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6. Irrational numbers. The set of irrational numbers is denoted by the letter 
I. Any real number that is not rational is irrational. These numbers can be 
written in decimal form, but not in fractions. They are infinite non-periodic 
decimal fractions. Some examples of irrational numbers: 

 ...6457513110.2 7 ...,4142135623.12 ...,1415926535.3   

 
Comment. Any root that is not a perfect root is an irrational number. Thus, 

any roots, such as the following examples, are irrational. 
  10002229 ,20 ,13 ,2 ..., ,10 ,8 ,7 ,6 ,5 ,3 ,2 9533  

 
7. Real (Real) numbers. The set of real numbers is denoted by the letter R. 

Each number (with the exception of complex numbers) is contained in the set 
of real numbers. When the general term "number" is used, it refers to a real 
number. All the following types or numbers can also be considered as real 
numbers. 

8. A real-number line. Each real number can be connected with one point 
on a real-number line 

 
 
For each set М one can construct a new set whose elements are all subsets 

of M and only these. Then the set М is called the universe I, and the set of all 
its subsets is a Boolean. 

If the cardinality of the universe is m, then the power of its Boolean 
(ࡵ)࡮ =  ૛࢓. 

 
Examples II.1.3. 
1. The nesting of the set of natural numbers N into the set of integers Z and 

the nesting of the latter into the set of real numbers R are shown in Figure 
II.1.3. 
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Figure II.1.3. Nesting of numerical sets in each other. 
2. We take as the universe I the set of natural numbers on the interval [1, 

3], I = {1, 2, 3}, then boolean 
B(I) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 
If the elements of a numerical set consist of all real numbers between a 

given pair of numbers, then such a set is called an interval. An interval can be 
considered as a segment of a real-number line. The end point of the interval is 
one of two points that mark the ends of the segment. 

An interval can include either one endpoint, both endpoints, or no 
endpoint. To distinguish between these different intervals, we use the interval 
notation. 

An open interval does not include endpoints. An exception from endpoints 
is indicated by parentheses (,) in interval notation. When the interval is 
represented by a real-number line segment, the end point exception is shown 
by an open point. For example, the range of numbers between numbers 3 and 
8, with the exception of 3 and 8, is written in interval notation as: (3, 8) = {х: 
3<х<8}. 

In the segment of a real number line, this interval would be represented by 
a line like this: 
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A closed interval includes endpoints. The inclusion of the endpoints is 
indicated in square brackets [ ] in the interval notation. When the interval is 
represented by a segment of a real-number line, the inclusion by an end point is 
shown by a closed point. For example, the range of numbers between numbers 
1 and 11, including both 1 and 11, is written in interval notation as: [1, 11] = 
{x: 1≤x≤11}. 

In the segment of a real-number line, this interval is represented as 
follows: 

 
One of the ends of the interval can be turned on, while the other is 

excluded. The interval [a, b) represents all numbers between a and b, including 
a, but not b. Similarly, the interval (a, b] will represent all numbers between a 
and b, including b, but not a. These intervals are presented in more detail in the 
table below. 

Infinite intervals are those that do not have a finite interval, either in the 
positive or negative direction, or both. The interval is always expanding in this 
direction. Infinite intervals are shown in the table: 

Table 7.1. Intervals. 

 
In mathematics, the interval is the set of real numbers with the property 

that any number that lies between two numbers in the set is also included in the 
set. For example, the set of all numbers x satisfying  
0≤х≤1 is an interval that contains 0,1and all numbers between them. 
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Other examples of intervals are the set of all real numbers R, the set of all 
negative numbers, and the empty set. 

Intervals are also defined on an arbitrary linearly ordered set, for example, 
on a set of integers or rational numbers. 

End points of the interval. 
The interval of numbers between a and b, including a and b, is often 

denoted by [a, b]. The numbers a and b are called the endpoints of the interval. 
To show that one of the ends must be excluded from the set, the 

corresponding square brackets can either be replaced in parentheses, or vice 
versa: 

},:{[,]),( bxaRxbaba   

},:{[,[),[ bxaRxbaba   

},:{],]],( bxaRxbaba  }.:{],[],[ bxaRxbaba   

Note that (a, a), [a, a) and (a, a) each represent an empty set, while [a, a] 
denotes the set {a} .For a> b, all four notations are It is customary to represent 
an empty set. 

1.Endless ends. In both record styles, you can use an infinite endpoint to 
indicate that there is no boundary in this direction. In particular, we can use a = 
-∞ or b = + ∞ (or both). For example, (-∞, 0), (0, + ∞) and (-∞, + ∞) represent 
the set of all negative, the set of all positive and the set of all real numbers, 
respectively. 

2.Intervals are an integer. The notation [a .. b] when a and b are integers, 
or {a .. b} or simply a .. b is sometimes used to indicate the range of all 
integers between a and b, including both. This designation is used in some 
programming languages. 

The number of intervals that has a finite bottom or upper end always 
includes that endpoint. Thus, the elimination of finite ones can be explicitly 
denoted as a .. b - 1, a+1 .. b or a + 1 .. b - 1. The alternative-bracket 
designation as [a .. b) or [a .. b [Rarely used for integer intervals. 

An open interval does not include its endpoints and is indicated in 
parentheses. For example (0,1) means that the end point is greater than 0 and 
less than 1. The closed interval includes its end points and is denoted in square 
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brackets. For example, [0,1] means that the end point is greater than or equal to 
0 and less than or equal to 1. 

3. Classification of intervals. The intervals of real numbers can be divided 
into eleven different types, listed below; Where a and b are real numbers,: 

Empty: , 
Degeneracy: , 
In fact, it is limited: 
Open: , 
Closed: , 
Left is closed, on the right is open: , 
Open left, right closed:, 
Left is bounded and right unbounded: 
Open to the left:, 
Left closed:, 
Left and right unlimited limited: 
Right open:, 
Cl osed right:, 
Unlimited at both ends: 
In some contexts, the interval can be defined as a subset of extended real 

numbers, the set of all real numbers complemented by -∞ and + ∞. In this 
interpretation, the notation [-∞, b], [-∞, b), [a, + ∞], and (a, + ∞) are all 
significant and distinct. In particular, (-∞, + ∞) denotes the set of all Simple 
real numbers, while [-∞, + ∞] denote extended real numbers. 

Task II.3.1: 
Let U = {1,2,3,4,5}; A = {1,3,5}; B = {2,4}; C = {2,3,4}; D = {5}. 

Calculate; (A∩B) ̅, (B \ D) \ (A∪C), (U \ B) ∪D 
Let U = {1, 3, 4, 5, 7, 9}; A = {1, 3, 9}; B = {5, 7, 9}; C = {4, 5}; D = {9}. 

Calculate (U \ D) \ C; A∩D; (A∩B ̅); (D ∩ ∩B )̅; 
Let U = {2, 4, 6, 8, 10}; A = {2, 4}; B = {4, 6, 8}; C = {2, 6, 10}; D = {4}. 

Calculate A∩D ̅; (A \ B) ∩ (U \ D); (B ∪̅C.) 
Let A = {1,2, 4}, B = {3, 4, 5, 6}, C = {5, 7} Calculate: A × C; A∪; A  ɰ

B; (A∩B) × C; (A \ B) × C. 
 
Questions II.3.1: 
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1. If A = {1,2,3}, B = {3,4}, then what does {1,2,3,4} mean? 
2. If A = {1,2,4}, B = {4,3,2}, then what does {2,4} mean? 
3. If A = {1,2,3,4}, B = {3,4,5,6}, then what does {2,4} mean? 
4. How many elements in each of the sets: {Ø, {Ø}, {Ø, {Ø}}}}. 
 
Tests II.3.1: 
1. Determine | D |, if D consists only of Arabic numerals, 
A) 10 
B) 26 
C) 28 
D) 0 
E) 30 
2. What result will be obtained after the operation А∩В for the given sets 

A = {0, 2, 4, 6} and B = {-2, -1, 0, 1, 2}? 
A) {0, 2} 
B) {0, 2, 4, 6} 
C) {-2, -1, 0, 1, 2} 
D) {0, 2, 4, 6, -2, -1, 0, 1, 2} 
E) Ø 
3. What result will be obtained after the operation А∪В for the given sets 

A = {1, 3, 5} and B = {2, 4, 6, 8}? 
A) {1, 2, 3, 4, 5, 6, 8,} 
B) {1, 3, 5} 
C) {2, 4, 6, 8} 
D) Ø 
E) {1, 3, 8}.  
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III. FOUNDATIONS OF MATHEMATICAL LOGIC 

III.1. Logical Calculus 

III.1.1. Proposional logic 

The application of mathematical methods in logic becomes possible when 
judgments are formulated in some precise language. Such exact languages have 
two sides: syntax and semantics. A syntax is a set of rules for constructing 
language objects (usually called formulas). Semantics is the totality of 
agreements describing our understanding of formulas (or some of them) and 
allowing one formulas to be considered correct, while others are not. 

A calculus is a set of inference rules that allow us to consider some 
statements - formulas that are deducible. Formulas are formed with the help of 
logical connections. 

Saying (affirmation) is a narrative sentence, in relation to which one can 
say, it is true-1 or false-0. 

The content of any science is made up of statements about the objects of 
its subject area. The logic of statements abstracts from the concrete content of 
statements and studies the structure of complex statements and their logical 
connections. 

Statements can communicate with each other with the help of logical links, 
which are given in Table III.1.1.1. 

Table III.1.1.1. Logical connectives. 

 
We will study mathematical logic with the help of the metalanguage, 

which differs from the objective language of the studied logic. If a natural 
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language can be used as a subject language with a combination of the language 
of mathematics, then to determine the metalanguage - the language of the logic 
of utterances - it is necessary to define the alphabet, syntax and semantics: 

 
Alphabet of the language of propositional logic. 
The alphabet of the language of propositional logic consists of logical 

constants and a countable set of utterances denoted by lowercase Latin 
(prepositional) letters with or without indices, and also from the designation of 
the five logical operations listed in Table III.1.1.1 and parentheses to indicate 
the priority of these operations : 

(1) 0, 1 - logical constants; 
(2) p, q, r, ..., - lowercase Latin letters with or without indices 

(propositional letters) are used to denote atomic utterances; 
(2), ˄, ˅, →, , ↔ are signs of logical operations for designating logical 

bundles of statements; 
(3) (,) - parentheses to indicate the priority of logical operations. 
 
Syntax of the language of propositional logic. 
The syntax of the utterance language is the rules that allow you to build 

complex statements from the elements of the alphabet, and inductively define 
the concepts "formula" as follows: 

1) Induction basis: every propositional letter denoting some atomic 
statement is a formula; 

2) Induction step: A and B are formulas, then: 
А  is the formula; 
А˄В is the formula; 
A˅B is the formula; 
A → B is a formula; 
A ↔ B is a formula. 
3) Induction restriction: the formula is obtained only with the help of the 

rules described in 1) - basis of induction and 2) - induction step. 
In the definition of formulas, meta-letters A, B are used; Symbols that do 

not belong to the subject language. 
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If in the formula the operation  is applied only to atoms, then such a 
formula is called a formula with close negations. 

A subformula is part of a formula itself that is a formula. 
Semantics of the language of propositional logic. 
The semantics of the utterance language are the rules for interpreting 

formulas that give certain logical meanings to formulas. 
The value of the truth of the formula depends only on the structure of this 

formula and on the truth values of its components, i.e. The value of a formula 
is a function of the values of its components. 

First in the table I.2.3.2. We define propositional letters and logical 
operations in a domain of two elements {0, 1}: 

 
Table I.2.3.2. Table of truth for logical operations. 

p q p p˄q p˅q p→q p↔q 
1 1 0 1 1 1 1 
1 0 0 0 1 0 0 
0 1 1 0 1 1 0 
0 0 1 0 0 1 1 

 
Interpretation of the formula is a mapping of , that associates with each 

atomic statement of this formula a certain truth value. The interpretation of , 
given on the set of atomic statements can be extended (extended) to the set of 
formulas (complex sentences) by induction. 

The value of the formula F[p1, ..., pn] for a given interpretation of the 
propositional letters :  {p1, ..., pn}   {0,1} in it can be determined by 
induction on the construction of the formula: 
F = p:  F[] = (p); 
F = A˄B:     F[] = (A˄B)[] = A[] ˄ B[];         
F = A:    F[] = A[]; 
F = A˅B:      F[] = (A˅B)[] = A [] ˅ B[];    
F = A→B:      F[] = (A→B)[] = A []→ B[];    
F = A↔B:      F[] = (A↔B)[] = A []↔ B[].   
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Interpretation, in which the truth value of the formula is 1, is called the 
model of this formula. 

Thus, the logic of propositions expresses certain functional-truth relations 
between statements that are given by a truth table. The truth table for n 
operands has 2n variants of the operand values represented by the rows of the 
table. Each of these lines has its own meaning of truth. 

 
Example III.1.1. 
1. Let the formula (p˄q)˅r → (p˅q) be given. It is necessary to 

determine the semantics of this formula. For this, a truth table will be 
constructed for it, using the rules of interpretation. 

      The table of truth formulas (p˄q)˅r → (p˅q): will be composed of 
chains that set the values of all of its subformulas. Below is the truth table of 
the formula (p˄q)˅r → (p˅q): 

p q r ݎ˅(ݍ˄݌) (ݍ˅݌)¬ ݍ˅݌ ݎ˅(ݍ˄݌) ݍ˄݌ →  (ݍ˅݌)  
 

1 1 1 1 1 1 0 0 
1 1 0 1 1 1 0 0 
1 0 1 0 1 1 0 0 
1 0 0 0 0 1 0 1 
1 1 1 0 1 1 0 0 
0 1 0 0 0 1 0 1 
0 0 1 0 1 0 1 1 
0 0 0 0 0 0 1 1 

 
Examples III.1.1. Examples of statements are the following narrative 

sentences; 
1) The number three is less than five; 
2) It is not true that the computer is smarter than a human; 
3) The programmer did not work or the computer was broken; 
4) He attended classes and successfully passed the exam; 
5) He speaks then and only when he hears. 
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Tasks III.1.1. 
1. Compare the truth tables of the formulas AB  and  A→B. 
2. Find the tautology among the following formulas: 

a)  (A&A)→(BC→(C→A)); 
b) (A→A) ~ A; 

3. After calculating only one line of the truth table, find formulas that are 
not tautologies: 

a)  AB→A&B; 
b) (A→B) → (B→A). 

4. Find the value of the formula (B→A)[], if there are (AB)[]=1 and 
(A→B)[ ]=1. 

 
Questions III.1.1. 
1. Will the formula (AB)&(C→ (A↔B)) be a tautology? 
2. Are there any statements A, B and C such that the following conditions 

are satisfied for them simultaneously in some interpretation:  
(A → B) [] =T; (B  C)[]=F; (B ↔ (A&C))[] = F? 
3. Are the following statements equivalent? 
A⊃B and if A, then B? 
A⊃B and as soon as A, then B? 
A⊃B and in case A there is a B? 
A⊃B and A implies B? 
4. What does the alphabet of logic of statements consist of? 
5. How is the subformula defined? 
6. How is the value of the formula calculated for a given interpretation of 

the propositional letters in it? 
7. How is the semantics of the language of utterances determined? 
 
Tests III.1.1. 
1. What is tautology? 
A) A formula that is true for all interpretations of its propositional letters. 
B) The column of values of which contains one false values. 
C) A formula that can be true or false. 
D) A formula that can only be false. 
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2. Which of them is the law of De Morgan? 
A) (p) ~ p 
B) p ~ p 
C) (pq) ~ pq 
D) pp ~ 0 
E)  pp ~ 1 
 
3. What is the order of the operations in the expression DF  G? 
A) first F, then F  G,, and at the end D F  G  
B) first F  G, and at the end D F  G. 
C) first F, and at the end D F  G. 
D) first F, then F  G. 
E) first G, then FG, and at the end D FG 
 
4. What is a formula with close negatives? 
A) A formula in which  applies only to atoms. 
B) A formula that is false for all interpretations. 
C) A formula that is true for all interpretations. 
D) A formula that is undefined for all interpretations. 
E) A formula in which the operation  is applied to all subformulas. 
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III.1.2. Logic of predicates 

Predicates are a language expression that denotes a property or relation. 
The calculus of predicates is a formal calculus admitting a statement about 

variables, fixed logical functions, and predicates. 
Before we consider the meta-language of the predicate calculus, we give 

definitions of the concept of a term, a logical function, and a perdicate. 
We define the concept of a logical function as an n-place operation on the 

set {F, T}. 
Alphabet: 
,ݔ (1) ,ݕ … , ,ଵݔ ,ଶݔ …are subject variables; 
(2) ݂, ݃, … , ଵ݂, ଶ݂, ... are function symbols. 
Term: 
,ݔ (1) ,ݕ … , ,ଵݔ ,ଶݔ …  are subject variables are terms; 
(2) if ݂(௡)is a functional symbol, ݐଵ, ,ଶݐ … ,   ௡  are terms, thenݐ

݂(௡)(ݐଵ, ,ଶݐ … ,  .௡) is a termݐ
 Term meaning: 
(1) if t is an object variable x, then Val t = (x); 
(2) if ݐ = ݂(௡)(ݐଵ, ,ଶݐ … , ݐ ݈ܸܽ  ௡), thenݐ = ݂(௡)(ݐଵ, ,ଶݐ … ,   (௡ݐ
Function: 
ݐ = ݂(௡)(ݐଵ, ,ଶݐ … ,  ௡) is representable by the termݐ
ݐ  = ݂(௡)(ݒଵ, ,ଶݒ … ,  ௡) ifݒ
ଵݒ} , ,ଶݒ … , ,ଵݔ}௡}ݒ ,ଶݔ … , [ߛ]ݐ  ௡}  andݔ = ݂(௡)[ߛ] for all interpretations 

:ߛ ,ଵݔ} ,ଶݔ … , ,௡}  {Fݔ T} 
The predicates are the logical functions ܬ(௡)(ݔଵ, ,ଶݔ … ,  ௡), which areݔ

given on the non-empty domain D and take the values 0, 1. 
The predicate ܬ(௡)(ݔଵ, ,ଶݔ … ,  ௡) becomes a statement after theݔ

signification of the variables entering it on the elements of the set D. 
Alphabet: 
,ݔ (1) ,ݕ … , ,ଵݔ ,ଶݔ … are subject variables; 
(2) ܲ(௡)(ݔଵ, ,ଶݔ … ,  ;௡) are predicate letters (n = 0,1, ...)ݔ
(3) &, , , →, ↔, ,  are logical connectives and quantifiers; 
(4) (,) are auxiliary symbols. 
Formulas: 
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(1) ܲ(௡)(ݔଵ, ,ଶݔ … ,  ;௡) are elementary formulas or atomsݔ
(2) if A, B are formulas, then A&B,  AB,  A,  A→B, A↔B are 

formulas; 
(3) if A(x) is a formula with free variable x, then xA(x) and xA(x) are 

the formulas. 
Free and bound variables. 
Variables in the range of the quantifier with respect to this variable are 

called bound, otherwise they are free. 
Interpretation of the formula. 
The value of the formula ܧ[ ଵܲ, ଶܲ, … , ௠ܲ; ,ଵݔ  ,ଶݔ … ,  ௡] in theݔ

interpretation of the predicate letters : ܲ(௡)ܬ(௡) and the notation 
: ,ଵݔ} ,ଶݔ … ,  of subject variables, is denoted by E[,], we (ܦ)  ܦ ௡}ݔ
define by induction on the construction of the formula E: 

ܧ (1 = ܲ௡(ݔଵ, ,ଶݔ … ,  ;௡),  then  E[,] = P[]ݔ
2) E = (A&B) [ ଵܲ, ଶܲ, … , ௠ܲ; ,ଵݔ  ,ଶݔ … ,    ௡], thenݔ

E[,] = A[,] & B[,]. 
    Similarly for the remaining logical connectives. 

ܧ (3 = ]ܣଵݔ∀ ଵܲ, ଶܲ, … , ௠ܲ; ,ଵݔ  ,ଶݔ … ,   ௡], thenݔ
E[, ]  =  ݔଵܣ[, ,ଵݔ ] = T], 

where  : ,ଵݔ} ,ଶݔ … ,    .if  A [, a, ] = T  for any aD  ,ܦ ௡}ݔ
ܧ (4 = ]ܣଵݔ∃ ଵܲ, ଶܲ, … , ௠ܲ; ,ଵݔ  ,ଶݔ … ,   ௡], thenݔ

E[, ]  = ,]ܣଵݔ∃  ,ଵݔ ] = T], 
where : ,ଵݔ} ,ଶݔ … ,  .if  A [,a,] = T  for some aD  ,ܦ ௡}ݔ

   The formula E[ ଵܲ, ଶܲ, … , ௠ܲ; ,ଵݔ  ,ଶݔ … ,  ௡] is said to be valid orݔ
tautological if for any domain D  , for any interpretations  of predicate 
letters and any valuation  of subject variables in domain D, E[,] = T. 
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Examples III.1.2 
1. Let P be a false statement 1 = 5, let Q be a false statement 3 = 7, and R a 

true statement 4 = 4. Show that conditional statements: "if P, then Q" and "if P, 
then R", both Are true. 

Decision. If 1 = 5, then, adding 2 to both sides of the equality, we get that 
3 = 7. Consequently, the saying "if P, then Q" is true. We subtract now the 
number 3 from both sides of the equality 1 = 5 and we come to -2 = 2. 
Therefore (-2) 2 = 22, that is, 4 = 4. Thus, "if P, then R" is also true. 

2.We show that the formula P (x, y) → Q (x) is not 1-valued, hence, not 
universally valid. 

Help. D = {1} is a singleton region, ܫଵ and ܫଶ are interpretations of the 
letter P, and ܬଵ and ܬଶare interpretations of the letter Q:  

x y ܫଵ ܫଵ ܬଵ ܬଵ 
1 1 T F T F 

 
The truth table of the formula P (x, y) → Q (x): 

x y P(x,y) Q(x) P(x,y)→Q(x) 
1 1 T T T 
1 1 T F F 
1 1 F T T 
1 1 F F T 

 
3. We show that the formula x(x P(x)→P(x)) is not 2-valued. 
Decision. D = {1, 2}, ܬଵ, ܬଶ, ,ଷܬ  :ସ are the interpretations of the letter Pܬ

                     
x 

 ସܬ  ଷܬ  ଶܬ  ଵܬ  

  1    T    T   F   F 
  2      T   F   T   F 

 
The truth table of the formula x(x P(x)→P(x)): 
 

x P(x) x P(x) x P(x)→P(x) x(xP(x)→P(x)) 
 ଵ T T Tܬ   1
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 ଵ Tܬ   2
1 
2 

 ଶܬ
 ଶܬ

T T 
F 

F 

1 
2 

 ଷܬ
 ଷܬ

T F 
T 

F 

1 
2 

 ସܬ
 ସܬ

F T 
T 

T 

 
4. We show that the formula x y P(x, y)→y x P(x, y) is not valid. 
Decision. Let D = {1, 2}, then the interpretation of the predicate letter P (x, 

y) is given by the following table: 
 

X Y  ܬଵ  ܬଶ  ܬଷ  ܬସ  ଻ ܬ
1 1 T T T T  T 
1 2 T T T T  F 
2 1 T T F F  F 
2 2 T F T F  T 

 
In particular, for the interpretation of ܬ଻  we obtain:  
For  x=1: ܬݕ଻(1,y)=T, for x=2: ܬݕ଻(2,y)=T, then ݔܬݕ଻(x,y)=T. 
For y=1: ܬ ݔ଻(x,1)=F, for y=2: ܬݔ଻(x,2)=F, then ݕܬݔ଻(x,y)=F. 
Hence ݔܬݕ଻(x,y)→ ݕܬݔ଻(x,y) = F. 

 
Tasks III.1.2. Will the following expressions be formulas, and if they are 

formulas, what are the variables in them that are free and which are related: 
,ଵݔ)ଷܲݔ∀ଶݔ∃ଵݔ∀ (1 ,ଶݔ ,ଷݔ   ;(ସݔ
,ଵݔ)ଵܲݔ∀ (2 (ଶݔ ⊃ ,ଵݔ)ଶܲݔ∃   ;(ଶݔ
,ଵݔ)ଶܲݔ∃ଵݔ∃ (3 ,ଵݔ)ܳ˄(ଶݔ  .(ଶݔ
2. Let M = < ܼା, ݂ >, where ܼାis the set of non-negative integers, f is the 

correspondence that for predicate symbols ܵ(ଷ)(ݔ, ,ݕ ,ݔ)(ଷ)ܲ   ,(ݖ ,ݕ  defines (ݖ
the following predicates: 

ܵ(ଷ)(ݔ, ,ݕ (ݖ = 1 ⇔ ݔ + ݕ = ,ݔ)(ଷ)ܲ ;ݖ ,ݕ (ݖ = 1 ⇔ ݔ ∙ ݕ =   .ݖ
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Write in the model M formulas that express the following statements:  
1) x = 0;  
2) x = 1;  
3) x = 2;  
4) x is an even number;  
5) x is an odd number;  
6) x = y;  
7) x ≤ y;  
8) x <y;  
9) x divides y;  
10) commutativity of addition;  
11) associativity of addition;  
12) the commutativity of multiplication;  
13) associativity of multiplication;  
14) the distributivity of addition with respect to multiplication; 
 
Questions III.1.2.  
1. What are the similarities and differences between the classical calculi of 

the logic of predicates and the logic of propositions? 
 
2. In what interpretation does the statement take on a true value? 
1) Any prime number is greater than zero; 
2) There is a planet that rotates around the earth; 
3) There is a season that is colder than summer. 
 
3. How to write sentences with the help of predicates? 
1) Happy hours are not observed; 
2) Only a fool can be happy; 
3) There are happy people in the world; 
4) Some fool does not watch the clock. 
4. Record with the help of predicates and quantifiers the condition "All 

animals are mortal. All people are animals. "Conclusion: All people are 
mortal" and to prove it is fair. 
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Tests III.1.2. 
1.The predicate is: 
A) A language expression denoting a property or relation. 
B) A term used in mathematical logic with respect to a particular logical 

system, to indicate what is for a given logic. 
C) The main section of modern logic, which describes the conclusions that 

take into account the internal structure of utterances. 
D) The result of some reconstruction of the natural language. 
E) An expression that takes the value F or T. 
 
2.Which of the following statements are true, and which ones are false? 
A) All cats have a tail; 
B) There exists an integer x satisfying the condition ݔଶ = 2; 
C) Every utterance is a negation of oneself; 
D) Every utterance is a logical consequence of oneself; 
E) That is, every utterance is a union of oneself. 
 
3.The predicate calculus is: 
A) A formal calculus admitting a proposition with respect to variables, 

fixed functions, and predicates. 
B) Formal theory, the main object of which is the concept of logical 

utterance. 
C) A term used in mathematical logic with respect to a particular logical 

system, to indicate that all laws of the propositional calculus are valid for a 
given logic. 

D) Rule of inference in the propositional calculus. 
E) Axiomatic system using expressions and predicates.  
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III.2. Logical laws and conclusions 

III.2.1. Tautologies and equivalence properties 

Before, to proceed to logical reasoning, we must master the logical laws 
that allow us to compare two statements to equivalence, in order, if necessary, 
to replace one another. Also, we need a technique for detecting tautologies, 
more powerful than a truth table. And, finally, we will consider methods of 
reasoning that can be useful for solving logical problems formulated in natural 
language. 

 
Definition III.2.1. 
1. Two statements are said to be equivalent if they take the same values on 

the same states of their variables. 
2. Tautology is a statement whose meaning is true for all interpretations of 

propositional letters that enter into it and is denoted by a symbol. 
3. Contradiction is a statement whose meaning is false for all 

interpretations of propositional letters entering into it. 
4. Two statements are said to be equivalent if they take the same values on 

the same states of their variables. 
Thus, one way to establish the equivalence of two statements is to 

calculate their truth tables and compare them. We will, however, use a 
different method. 

Two statements A and B are equivalent if and only if A ~ B is a tautology 
(generally valid). 

Below is a list of the main tautologies in the propositional calculus: 
   1а. ╞ A→(B→A)  
   1b. ╞ (A→B)→((A→(B→C))→(A→C)) 
     2. ╞ A→(B→A&B)           
   3а. ╞ A&B→A 
   3b. ╞ A&B→B 
   4а. ╞ A→AB 
   4b. ╞ B→AB 
     5. ╞ (A→C)→((B→C)→(AB→C)) 
     6. ╞ (A→C)→((A→C)→A) 
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     7. ╞ A→A 
     8. ╞ (A→B)→((B→A)→(A↔B)) 
   9а. ╞ (A↔B)→(A→B) 
   9b. ╞ (A↔B)→(B→A) 
   10. ╞ (A→(A→C) 
To simplify expressions, we define what it means for two expressions to 

be equivalent and replace the more complex statement by the less complex 
one. 

Basic, frequently used equivalence properties: 
I. Commutativity 

1. A˄B ~ B˄A 
2. A˅B ~ B˅A 

II. Associativity 
1. A˄ (B˄C) ~ (A˄B) ˄C 
2. A˅ (B˅C) ~ (A˅B) ˅C 

III. Distributivity 
1. A˄(B˅C) ~ (A˄B)˅(A˄C) 
2. A˅(B˄C) ~ (A˅B)˄(A˅C) 

IV. De Morgan's Law 
1. (A˅B) ~ A˄B 
2. (A˄B) ~ A˅B 

V. The law of implication 
1. A~B ~ (A→B)˄(B→A) 

VI. The law of forward and backward conditions 
1. A~B ~ (A→B)˄(B→A) 

VII. The property of negation 
1. (A) ~ A 

VIII. The law of identity 
1. A ~ A 

IX. The law of exclusion of the third 
1. A˅A ~ Т 

X. Law of Contradiction 
1. A˄A ~ F 

XI. Disjunction Properties 
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1. A˅A ~ A 
2. A˅Т ~ Т 
3. A˅F ~ A 
4. A˅(A˄B) ~ A 

XII. Conjunction Properties 
1. A˄A ~ A 
2. A˄Т ~ A 
3. A˄F ~ F 
4. A˄(A˅B) ~ A 

XIII. Laws of absorption 
1. A&AA,  AAA 
2.A&(AB)  A, A(A&B)A    
3. A&TA, A&F  F, ATT, AFA. 
4. A→(B→C) ~ A&B→C. 
 5. (A→B)&(B→A) ~ (A↔B) 

XIV. Law of Contraposition 
1. (A→B) ~ (B→A) 

XV. The law of identity 
1.A→A                                 

We will use these properties for different purposes. Commutativity, for 
example, allows us to swap elements of an utterance, in order to simplify it. 
Associativity allows you to remove brackets. Distributivity allows us to collect 
similar terms, just as we do in arithmetic terms. The law of implication allows 
you to leave the operation → using only operations �, ˅,. In order to verify the 
correctness of these properties, it is sufficient to construct their truth tables. 

Using the equivalence properties, we can simplify utterances. 
 
Example III.2.1: 
1. Simplify the expression (р˅q)˄r˄(р˅q). We apply the rules: 
I.1 we obtain  (р˅q)˄(р˅q)˄r 
I.2 we obtain (q˅р)˄(р˅q)˄r 
V.1 we obtain (q→р)˄(р→q)˄r 
VI.1 we obtain(р~q)˄r 
Finally, we obtain (р˅q)˄r˄(р˅q) ~ (р~q)˄r 
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2. Simplify the expression р˅(q→р)˅q. We apply the rules: 
V.1, we obtain р˅((q˅р)˅q 
VII.1 we obtain р˅(q˅р)˅q 
I.2 we obtain р˅(q˅р)˅q  
I.2 we obtain (р˅р)˅(q˅q)  
XI.1 we obtain р˅(q˅q) 
IX.1 we get р˅1 
XI.2 we get 1 
In summary, we have proved that р˅(q→р)˅q ~ 1 is a tautology. 
 
3. Simplify the expression ((р→q)→р)→р.  
V.1 we obtain ((р→q)˅р)→р 
V.1 we obtain ((р˅q)˅р)→р 
IV.1 we obtain (((р)˄q)˅р)→р 
VII.1 we obtain ((р˄q)˅р)→р 
I.2 we obtain (р˅(р˄q))→р 
XI.4 we obtain р→р 
V.1 we obtain р˅р 
I.2 we obtain ppp 
IX.1 we get 1 
As a result, it is proved that ((р→q)→р)→р  is a tautology. 
 
Task III.2.1: 
Suppose we are given a composite proposition (р˅q)˄(р˅q). Prove that 

this compound statement is equivalent to the statement p. 
Help. 
It is necessary to fill with the values in the truth table the column for the 

statement (р˅q)˄(р˅q). 
Then the resulting column of values is compared with the column for p. If 

they coincide, then we can conclude that the expression (р˅q)˄(р˅q)  is 
equivalent to p and denote it as (р˅q)˄(р˅q) ~ р. This means that wherever 
we meet the expression (р˅q)˄(р˅q), we can replace it with p. 
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Tests III.2.1. 
1. Will the following statements be equivalent 
A) A∧B and A and B? 
B) A∧B and not only A, but also B? 
C) A∧B and B, although A? 
D) A∧B and B, despite A? 
E) A∧B and both A and B? 
 
2. Will the following statements be equivalent? 
A) A∨B and A or B? 
B) A∨B and A or B? 
C) A∨B and A, if not B? 
D) A∨B and A and B? 
E) A∨B and A or B? 
 
3. Will the following statements be equivalent? 
A) A~B and A, if and only if B? 
B) A~B and if A, then B, and back? 
C) A~B and A, if B, and B, if A? 
D) A~B and A is equivalent to B? 
E) A~B and A if and only if B? 
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III.2.2. Logical conclusions 

Proof based on inference rules.  
The main purpose of any reasoning is to establish the truth in the form of 

some universally valid statement, i.e. Tautology. For simple cases, we have a 
method of truth tables. However, it becomes cumbersome when the number of 
variables is greater than four. 

There is another method called evidence, which is a sequence of logical 
inferences, the correctness of each of which is strictly logically justified. Thus, 
the reasoning in this method takes the form of a sequence of logical 
conclusions. 

The process of proof in the propositional logic is essentially a sequence of 
transformations of the statement p in order to show that p is valid and is a 
development of the method of simplifying utterances. However, the proof 
includes an important additional component: a derivation from the assumption. 
The conclusion in the proof is based on a small number of inference rules. 
Each step in the proof is either an already proven statement, or a statement that 
is true by assumption and introduced for subsequent steps. Each step that is a 
guess is in brackets [,]. These rules establish that some statements can follow 
from others (axioms), the truth of which has already been established, or are 
considered as such by assumption. All other steps must be proven. The last 
step in the proof must be the very statement p: 

Let us prove the proposition pp   
1. [р] 
2. р 
3. p p    Rule I 
The first step is to make the assumption that p is generally valid. Then the 

second step directly follows from the first. Since we have assumed the validity 
of p at the first step, we use this fact on the second step. In the third step we 
use the rules of inference I, which establishes the validity of a statement. 

The proof with the help of inference rules is more flexible than the proof 
with the help of the truth table. In the first case, we can analyze each step in 
the chain of evidence. At the same time, an unlimited growth of the truth table 
will not allow us to do this. 
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When you look closely at the rules of inference, you can see that they are 
in good agreement with our intuition. For example, take rule VIII. If the 
validity of the statements p and q was proved at the previous steps, then 
obviously the statement p q  is also valid. 

So, in the sequel, in the proof, we will use either the equivalence rules (in 
this case each step will be a replacement of the right occurrence in the 
statement on the left-hand side of the rule) or the inference rules. 

I. Introduction → 

[р]            
qp

q


 

II. Introduction ~ 

р→q       
qp
pq


  

III. Removing → 

1. р      
p q

q


 (Modus рonens) 

2. q     p q
p




(Modus tollens) 

IV. Removing ~ 

1. 
p q
p q

  

2. 
p q
q p

  

V. Introduction 

[р]   F
p

 

VI. Removal 

1. р      
 p
F  

2. F
p  

 
VII. Introduction 
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1. р   
q

p q  

VIII. Introduction 

1. 
p

p q  

2. 
q

p q  

 
IX. Uninstalling 

1. 
p q

p


 

2. 
p q

q


 

X. Removal 

[р] [q]          r
    rrqp     

Deductive output.  
Deductive inference is a method of reasoning in which a private 

conclusion is derived from a general conclusion. A chain of reasoning, where 
statements are related by logical conclusions. 

The beginning (premisses) of deduction are axioms or simply hypotheses 
that have the character of general statements ("general"), and the end - 
corollaries from premises, theorems ("private"). If the premises of deduction 
are true, then its consequences are also true. Deduction is the opposite of 
induction. 

Using deductive inference to prove p q p ( )  
[p] - Assumption 
[q] - Assumption 

1. р –  1. 
2. q p   – I, 2, 3 
3. p q p ( ) – I, 1, 4 
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We have assumed the validity of the statements of p and q and using rule I. 
Introduction. 

 
Using the rule Modus Ronens. 
This rule works well when you need to prove statements like "If the show 

shows" Gioconda - Gioconda ", then I'll buy tickets." If someone made this 
statement and you saw that the exhibition shows "Gioconda - Gioconda", then 
you You can conclude that this person bought tickets. 

Prove it (( ) ( ) )p q r p r q      
1. [( ) ( ) ]p q r p r      – Assumption 
2. r p     – IX. Removal  , 1 
3. r     – IX. Removal  , 1 
4. р     – III. Моdus Рonens, 2, 3 
5. р q      – IX. Removal  , 1 
6. q     – III. Моdus Рonens. 4, 5 
7. (( ) ( ) )p q r p r q       – I. Introduction , 1, 6 
 

Using Моdus Tollens. 
Prove (( ) )p q q p     
1. [( ) ]p q q     – Assumption 
2. р q     – IX. Removal  , 1 
3. q      – IX. Removal  , 1 
4. р      – III.2. Modus Tollens, 2, 3 
5. (( ) )p q q p      – I. Introduction , 1, 4 
 

Using Introduction   and Removal  . 
Prove (( ) )p q q p     

1. [( ) ]p q q      – Assumption 
2. р q      – IX. Removal  , 1 
3. q      – IX. Removal  , 1 
4. [р]     – Assumption 
5. q      – III. Моdus Рonens, 4, 2 
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6. q      – 3 
7. 0      – VI. Removal  , 5, 6 
8. р      – V. Introduction  4, 7 
9. (( ) )p q q p       – I. Introduction  1, 8 

 
The proof is by contradiction. 
On the use of the rule V. Introduction � the frequently used method of 

proof is based - the proof is by contradiction. We have already used it several 
times. His idea is as follows. 

Let us want to prove the general validity of the proposition Q: 
"Triangle with sides 2, 3, 4 - not rectangular." 
Suppose that Q is universally valid, that is, a triangle with sides 2, 3, 4 - 

rectangular. Then, using the Pythagorean theorem, we can assert that 4 + 9 = 
16, but 4 + 9 = 16. Hence, using the rule VI.1 Removal of , we obtain 0. 
Having 0 and the assumption of general significance Q, using the rule V , We 
obtain the general validity of (Q). Whence, using rule VII from Section 
III.2.1, we obtain the general validity of Q. 

Prove it (( ) )p q p q    
1. [ ((( ) ) )]   p q p q     – Assumption 

2.    ( (( ) ) )p q p q     – The law of implicationV.1, 1 

3.    ( (( ) ))p q p q    – De Morgan’s Law IV.1 
4. q       – IX.2. Removal , 3 
5. (( ) )p q p        – IX.1. Removal , 3 
6. p q        – IX.1. Removal , 5 
7. р       – IX.2. Removal , 6 
8. q       – III.1. Моdus Рonens, 6, 7 
9. 0       – V.1 Removal , 4, 8 
10. (( ) )p q p q        – V. Introduction  , 1, 9 

 
The duality principle.  
Suppose that the formulas E, F do not contain other operations other than 

, ˄,  and are formulas with close negations. Formulas E and  F obtained 
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from E and F by simultaneous replacement everywhere & to  and & to , are 
said to be dual to the formulas E and F, respectively. Then the following 
assertions hold: 

a) If   ╞  E,  then  ╞ E.   b) If  ╞ E,  then  ╞   E.   
с) If  ╞ E  F,  then ╞ E   F.  d) If  ╞ E → F,  then ╞ F→ E. 

 
A logical consequence.  
Let the formulas ܣଵ , ,ଶܣ … ,  ௡ and B be given. If the truth of the formula Bܣ

follows from the simultaneous truth of the formulas ܣଵ, ,ଶܣ … ,  ௡, thenܣ
formula B is a logical consequence of the formulas ܣଵ, ,ଶܣ … ,  ௡ and isܣ
denoted by ܣଵ, ,ଶܣ … , ,ଵܣ ௡ ╞ B, (n1), hereܣ ,ଶܣ … ,  ௡ are the premises, andܣ
B is the conclusion. 

 
Rules of inference.  
In the propositional logic, a single output rule, called modus ponens, is 

used, which is the procedure for passing from two formulas of the form A, A 
→ B (premisses) to the formula B (conclusion): 

B
BA, A 

  (modus ponens) 

The requirements that the rules of inference must satisfy are that true 
conclusions must be obtained from true premises. 

 
Reasoning with the help of predicates.  
Reasonings with the help of predicates are analogous to arguments using 

sentences. The rules of inference, which we introduced in III.2.2 for utterances, 
are also true for predicates. Replacing all variables with their current values 
and performing the necessary calculations, we obtain a statement to which the 
known rules of inference apply. However, there are two special cases for 
which we do not have the appropriate inference rules: this is the use of 
quantifiers. Table III.2.2 summarizes the derivation rules for the case of 
predicates with quantifiers. 

Table III.2.2. The inference rules for predicates with quantifiers. 
Introduction  Removal  
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R P
i R i P i


 : ( ) : ( )  




i R i P i
R i P i

: ( ) : ( )
( ) ( )0 0

 

Introduction  Removal 


  

i R i P i
i R i P i
: ( ) : ( )
: ( ) : ( )  


  

i R i P i
i R i P i
: ( ) : ( )
: ( ) : ( )  

 
For example, consider the rule of introduction . "It says that if RР is 

satisfied on all the states in question, then we can state that for all values of 
i R i P i: ( ) : ( ) , where  

Consider for example the rule of introduction , which states that if RР 
is satisfied on all the states considered, then we can state that for all values of i, 
where  i R i P i: ( ) : ( ) is satisfied. The second rule for removing  is that if the 

predicate i R i P i: ( ) : ( ) is satisfied, then for arbitrary i is satisfied 
R i P i( ) ( )0 0 ,   

As an example demonstrating the use of these rules, let us consider the 
justification of the proof method by induction. We have used this method more 
than once to prove the properties of algorithms. With him, we will meet many 
times when justifying the correctness of programs. 

To prove the feasibility of the predicate 
i R i P i: ( ) : ( ) , where R i( )  has the form i{1, 2, …} 

Let us consider two cases: 
The initial step: We prove P(1) 
Induction step: We prove Р(i)  Р(i+1)   for any i ≥ 1. 
If we have shown the feasibility of these steps, then we have 

Р(1) 

Р(1)  Р(2) 

Р(2)  Р(3)  etc. 
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Then from the first two lines and the Modus Ponens rule we obtain the 
feasibility of P(2). From P(2) from the third line, applying again Modus 
Ponens, we get P(3), etc. to infinity. 

In this way 
i{1, 2, …} : Р(i) . 

 
Example IIІ.2.2. 
On Wednesday, when the robbery occurred, either Pitts was in the bank's 

operating room, or Elena in the bank's accounting department. Pitts was never 
seen in the operating room without Irwin. Irwin left the bank on Wednesday 
only when he and Helen went to a meeting with clients. If Korn was involved 
in the robbery, Irvina would not be in the bank. The robbery took place on 
Wednesday. Could Korn be a robber? 

Denote by: 
p = Pits was in the operating room; 
q = Elena was in the accounting department; 
s = Irwin was in the operating room; 
h = Corn participated in the robbery; 
u = obbery happened on wednesday. 
Then the original statements can be written as follows: 

1. u → (p˅q) 
2. p → s 
3. s → q 
4. h → s 
5. u 
6. From 1, 5 items of Modus ponens we obtain p˅q 
7. Suppose that [q] 
8. From 3, 7 points of Modus Tollens we obtain s 
9. From 7, 8 and "introduction →" we obtain q → s 
10. From 4, 10 items of Modus Tollens h 
So, Korn could not participate in the robbery. 

 
Tasks III.2.2. 
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1. Translate each of the following reasonings into logical symbols and 
analyze the result for correctness: 

1) I would pay for a computer repair job only if it started working. It does 
not work. Therefore, I will not pay for repairs. 

2) If he had not told her, she would not have known for sure. And if she 
did not ask him, he would not have told her. But she found out. So she asked 
him. 

3) He said that he would come if there was no rain. But it's raining. So he 
will not come. 

 
2. Check the correctness of the reasoning: Irvine will not do this work, if it 

makes Pits. Pitts and Sidorov will do this work if and only if Irwin does it. 
Sidorov, this work will do, but Irvine does not. Therefore, Pitts will not do this 
job. 

 
3. Let M be the set of points, lines, and planes of a three-dimensional 

space. Let us consider the model D = <M, f>, where f is the correspondence 
that determines predicates for the predicate symbols ܳ(ݔ, ,(ݕ ,ݔ)ܴ  ,(ݕ

ଵܲ(ݔ), ଶܲ(ݔ), ଷܲ(ݔ) define the predicats: 
ଵܲ(ݔ) = 1 ⇔   ,"ݐ݊݅݋݌ ݏ݅ ݔ"
ଶܲ(ݔ) = 1 ⇔   ,"line ݏ݅ ݔ"
ଷܲ(ݔ) = 1 ⇔ “x is plane",  

,ݔ)ܳ (ݕ = 1 ⇔   ,"lies on y ݔ"
R (x, y) = 1 ⇔ "x coincides with y".  
 
Using the above predicates, write the following statements in this model: 
1) Through every two points one can draw a straight line and, moreover, 

unique if these two points are different; 
2) Through every three points not lying on one line, we can draw a single 

plane; 
3) The definition of parallel lines; 
Questions III.2.2. 
1. The formulas from which formulas are the following sequences of 

formulas: A⊃ (B⊃C), A, B⊃C, B, C? 
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2. Find out which of the statements of each pair are the negatives of each 
other? 

A) In the book more than 100 pages; 
B) The book does not exceed 100 pages; 
C) This clove is red; 
D) This pink is pink; 
E) This word is a noun; 
F) This word is an adjective. 
 
3. Which of the following sentences are compound statements? 
A) In 1 m 100 cm or 10 dm; 
B) 27 times 3 and less than 3; 
C) It is not true that 45 is an even number; 
D) Today is Monday; 
E) If the triangle is equilateral, then it is isosceles; 
4. Suppose two statements are given in the language of first-order logic. A 

- ∀x ∃y (x ≥ y) and B - ∃y ∀x (x ≥ y), x∊N, y∊N, and N is the set of natural 
numbers. 

A) How will these statements be written in a natural language? 
B) Is saying A true in this interpretation? 
C) Is statement B true in this interpretation? 
D) Is B a logical consequence of A? 
E) Is A a logical consequence of B? 
 
Tests III.2.2. 
1. Statements A and B are equivalent if: 
A) If and only if the truths of propositions A and B coincide; 
B) If and only if A is true, and B is false; 
C) If and only if A is false and B is true; 
D) When the conjunction of statements A and B is false; 
E) Then, when the disjunction of propositions A and B is true; 
 
2. Find out in what cases the inferences are true: 
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A) If the number is natural, then it is an integer; The number 6 is an 
integer; Hence, it is natural; 

B) If the number is odd, then it is not divisible by 2;  
B) The number 15 is odd; Therefore, the number 15 is not divisible by 2; 
C) If the triangle is isosceles, then there are at least two equal sides in it; 

Triangle ABC - non-isosceles; Hence, there is not a single pair of equal sides 
in it; 

D) If the number is divided by 3, then the sum of the digits in the record of 
this number is divided by 3; The number 32 is not divisible by 3; Then the sum 
of the digits in its record is not divisible by 3; 

E) If the number is even, then it is divisible by 3; The number 13 is odd; 
Therefore, the number 13 is not divisible by 2. 

 
3. Choose deductive reasoning: 
A) All honors students of the I-course; Student II-course John - an 

excellent student; Therefore, John is an athlete; 
B) Not all excellent students II-course athletes; Sophomore Jack is an 

excellent pupil; Consequently, he is not an athlete; 
C) All honors students of the I-course; Sophomore Elen is not an excellent 

pupil; Therefore, Elen is not an athlete; 
D) All honors students of the I-course; Sophomore Cohen is an athlete; 

Therefore, he is an excellent student. 
E) Not all excellent students II-course athletes; Freshman Bob is an 

excellent pupil; Therefore, he is not an athlete. 
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IV. GRAPHS 

IV.1. The concept and types of graphs 

IV.1.1 Elements and methods for representing graphs 

A graph is a dynamic network-connected data structure, represented by a 
set of pairs called vertices and edges. Each vertex can be connected with 
several vertices or with itself by means of edges and a vertex that does not 
form a hierarchy. 

Formally, the graph is defined as the set of pairs G = (V, E), where V is a 
set of vertices, E is a set of edges, in fact there is a relation on V i.e. VVE  . 

The two vertices that are connected bty the edge of a graph are called the 
boundary vertices of this edge and are adjacent , so as Vvi  and Vv j  - 

boundary vertices (݅ = 1, ݊തതതതത; ݆ = 1, ݉തതതതതത), Evv ji ),( are edges. 
The edge whose boundary vertices coincide is called a loop, i.e. 

Evv ii ),( - a loop. There is a single vertex in the loop, i.e. the edge originates 
from one vertex and directly enters this vertex back (see Figure IV.1.1.1). 

 
Figure IV.1.1.1. The loop. 

The edges with the coinciding boundary vertices are called fold. For 
example, if 3 edges have the same boundary vertices, then they will be 3-fold 
edges (see Figure IV.1.1.2). 

 
Figure IV.1.1.2. Multiple edges  

A graph without loops and multiple edges is called a simple graph. 
Vertices that do not have incident edges are called isolated vertices. 
The number of edges incident to a vertex is called a degree of a vertex. 
Vertices whose degrees are even numbers are called even vertices. 
Vertices of odd degree are called odd vertices. 
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A vertex whose degree is 1 is called an end vertex (the degree of an 
isolated vertex is 0). 

The sum of the degrees of all its vertices is  twice the number of edges, i.e. 
is an even number. The number of odd vertices of any graph is even. 

Depending on the properties of vertices and edges, and also on the type of 
relations between them, the graphs are divided into several types. 

A graph consisting only of isolated vertices is called an empty or null-
graph and is denoted by ௡ܱ, where n is the number of vertices of the graph. 

If every two vertices in a graph are connected, then such a graph is called a 
connected graph. 

If there is at least one pair of disconnected vertices in the graph, then the 
graph is called disconnected. 

If in a graph the vertex sets V and edges E are finite, then it is called a 
finite graph. 

A finite graph containing n vertices and m edges is called an (n; m) graph. 
If an equal number of edges originates from each vertex of the graph and 

an equal number of edges enter each vertex, then such a graph is called a 
regular graph. 

If a graph does not contain loops and multiple edges, then such a graph is 
called a simple graph. A simple graph in which any two vertices are connected 
by an edge is called a complete graph and is denoted by: ܷ௡, where n is the 
number of vertices 

A graph without loops, but with multiple edges, is called a multigraph. 
A graph that contains at least one loop is called a pseudograph. Multiple 

edges can be in the pseudograph. 
If a direction is defined for each edge of the graph, then such a graph is 

called an oriented graph. 
If all pairs of vertices of the graph are connected in both directions, then 

such a graph is a strongly connected graph. 
If every edge of a graph has weight, then such a graph is called a weighted 

graph, i.e. We can define a function REw : , where R is the set of real 
numbers, w is the weight of the edge, and w≥0. 

If the set of vertices of a simple graph V admits such a partition into two 
disjoint subsets ଵܸ and  ଶܸ (that is, ଵܸ ∩  ଶܸ =  ∅) that there are no edges 
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connecting vertices of the same subset, then it is called bigraph or bipartite 
graph. 

A graph is called flat, if its edges do not intersect at points other than the 
vertices of a given graph. 

There could be a relationship between two graphs, including 
multidimensional ones. For example, for given two graphs, one can determine 
the ratio of their complete coincidence (isomorphism) or the inclusion relation 
(to be part) of one graph in another graph. 

Two graphs are said to be isomorphic, if they have one and the same 
number of vertices, and for any 2 vertices of the first graph connected by an 
edge, the corresponding vertices of the second graph are also connected by an 
edge and back. 

The graph ܩᇱ = (ܸᇱ,  ᇱ) is called part of the graph G = (V, E),                  ifܧ
ܸᇱ ⊂ ܸ and ܧᇱ ⊂  .ܧ

A part of a graph that does not contain isolated vertices is called a 
subgraph. 

Part of the graph, which, along with some subset of the edges of the graph, 
contains all the vertices of the graph, is called a sigraph. 

In graphs, you can solve the following problems: finding the shortest path 
from one vertex to another, finding the number of closed paths, etc. To do this, 
we introduce the following definitions: 

A path in a graph is a sequence of edges leading from one vertex to 
another vertex, such that every two adjacent edges have a common vertex, and 
no edge occurs more than once, i.e. Formally the path in the graph is a 
sequence of vertices ),,...,,,( 1321 mm vvvvv  such that the pairs 

)},(),...,,(),,{( m1m3221 vvvvvv  become edges. This path can be in both 
directions. 

A path without repeating edges is called a chain, and a chain without 
repeating vertices is called a simple one. 

A chain in which ending vertices coincide is called a cycle, and the cycle 
in which there are no repeated vertices except the terminal vertices, is called a 
simple one. If the path back enters the same vertex, then such path is called a 
closure (cycle), i.e. in the closure, the staring and ending vertices coincide. If 
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the closure does not pass through one of the vertices of the graph more than 
once, then it is called a simple closure. 

The length of the path is the number of edges of this path. If the weights of 
the edge are their lengths, then the path length is calculated as: 





 

1

1
11321 ),(),,...,,,(

m

i
iimm vvwvvvvvw  

The graph can be represented using an adjacency matrix. To do this, we 
introduce the ratio of the contiguity between the vertices. 

Having a vertex set V, we can determine the adjacency relation by 
representing each edge as a pair of adjacent vertices, i.e. 

 
݁௞ = ൫ݒ௜ , ௝൯ݒ = ൫ݒ௝ ,  ௜൯ݒ

 
The vertex set V together with the defined adjacency relation completely 

determines the graph G. 
A graph G with the number of vertices n can be represented by an 

adjacency matrix by a square matrix A of size n × n whose rows and columns 
correspond to vertices of the graph iv  and ,jv  its element ija is equal to the 

number of multiple edges connecting the vertices iv  and ,jv   and 0ija , if 

is not exist the edge going from the vertex iv  to vertex .jv  The adjacency 
matrix of an empty graph that does not contain a single edge consists of zeros. 
The adjacency matrix of a simple graph consists of zeros and ones whose main 
diagonal contains only zeros. Sometimes, a loop is counted as two edges, that 
is, the value of the diagonal element in this case is equal to twice the number of 
loops around the i-th vertex. 

A graph can be represented by an incidence matrix. 
The incidence matrix of graph G is a matrix of size n × m, in which the 

number of rows n corresponds to the number of vertices, and the number of 
columns of m is the number of edges. 

Elements of this matrix are defined by the rule: the element (i; j) is equal 
to 1 if the vertex ݒ௜is incident to the edge ௝݁, and is equal to 0 if ݒ௜  and ௝݁ are 
not incident. The column corresponding to the edge Evv ji ),( contains -1 in 
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the line corresponding to the vertex jv and 1, in the line corresponding to the 
vertex iv . In all other cases 0. 

 
Let two parts of the graph G be given:  ܩଵ and ܩଶ, then we can define: 
1. The union of graphs is the graph ܩ = ∪ ଵܩ   ଶ, the sets of vertices andܩ 

edges of which are defined: ܸ =  ଵܸ ∪  ଶܸ, ܧ =  .ଶܧ ∪ ଵܧ 
2. The intersection of graphs is the graph ܩ = ∩ ଵܩ   ଶ_2, the sets ofܩ 

vertices and edges of which are defined: ܸ =  ଵܸ ∩  ଶܸ, ܧ =  .ଶܧ ∩ ଵܧ 
 3. If  ଵܸ ∩  ଶܸ =  ∅   and ܧଵ ∩ ଶܧ  = ∅, then the graphs are said to be 

disjoint. 
3. The addition of two graphs ܩଵ and ܩଶ modulo 2 - this is the graph 

ܩ = ܸ ଶ, the set of vertices of which isܩ ⊕ ଵܩ  =  ଵܸ ∪  ଶܸ, and the set of 
edges ܧ = ∪ ଵܧ)  ∩ ଵܧ)\(ଶܧ   (ଶܧ 

If A is the adjacency matrix of the graph G, then the matrix A n  has the 
following property: the element in the i-th row, the j-th column is equal to the 
number of paths from the i-th vertex to the j-th, consisting of exactly n edges. 

 
Examples IV.1.1. 
1. We construct an adjacency matrix for the graph shown in the figure 

below. 
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The adjacency matrix of this graph has the form: 

 v1 v2 v3 v4 v5 

v1 0 1 0 0 0 

v2 1 0 2 0 1 

v3 0 2 0 0 1 

v4 0 0 0 0 0 

v5 0 1 1 0 2 

 

For the graph depicted in the previous example, the incidence matrix has 
the form: 

 е1 е2 е3 е4 е5 е6 
v1 1 0 0 0 0 0 
v2 1 1 1 0 0 1 
v3 0 1 1 1 0 0 
v4 0 0 0 0 0 0 
v5 0 0 0 1 2 1 

 
2. Zero graphs:  
            -  ૝ࡻ                 -  ૜ࡻ                   -  ૛ࡻ               -   ૚ࡻ 

 

 

 ଵݒ

 ଶݒ
 ଷݒ

 ସݒ

 ହݒ

݁ଵ 
݁ଶ 

݁ସ 

݁ହ 

݁଺ 
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3. Complete graphs: 
 

       - ૝ࢁ                                - ૜ࢁ                          - ૛ࢁ

 

Task IV.1.1. 

1. Construct a graph corresponding to a given adjacency matrix. 

 v1 v2 v3 v4 v5 v6 
v1 1 0 1 0 0 0 
v2 0 0 0 1 1 0 
v3 0 0 1 0 0 2 
v4 2 0 1 0 0 0 
v5 0 0 0 1 0 1 
v6 0 1 0 0 1 0 

 

2. Construct a graph corresponding to a given adjacency matrix. 

 v1 v2 v3 v4 v5 v6 
v1 0 0 1 2 1 0 
v2 0 2 0 0 1 0 
v3 1 0 0 2 0 0 
v4 2 0 2 0 1 0 
v5 1 1 0 1 2 1 
v6 0 0 0 0 1 0 

 

Questions IV.1.1. 

1. Which edges are called fold? 
2. What is a loop? 
3. Which two vertices are said to be adjacent? 
4. Which vertex is called isolated? 
5. Explain what the incidence of vertices and edges means? 
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6. What is the difference between the adjacency matrix and the incidence 
matrix? 

7. What is a path in the graph? 
8. What is the difference between a zero graph and a complete graph? 
9. What is a cycle? 
10. How is a path length determined? 
 
Tests IV.1.1. 
1. What are the points of a graph called? 
A) vertices of the graph; 
B) points of the graph; 
C) arcs of the graph; 
D) nodes of the graph; 
E) edges of the graph. 
 
2. The graph is ... 
A) the set of points, two of which are necessarily connected by lines; 
B) the set of points that are never connected by lines; 
C) only two points that are connected by lines; 
D) the set of points that can be connected by lines; 
E) the set of points that can be connected to each other; 
 
3. The lines that connect the vertices are called ... 
A) edges of the graph; 
B) the sides of the graph; 
C) vertices of the graph; 
D) segments; 
E) by a cycle. 
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V.1.2. Trees 

A tree is a graph in which all vertices are connected, and the paths are not 
closed, i.e. connected graph without cycles and without loops. 

In the tree, the vertices are divided into the following types: 
1) The root is the vertex from which one or several edges emanate, but no 

one edge that enters, i.e. a vertex that does not have any ancestor, but can have 
many descendants; 

2) A branch is a vertex in which one edge enters, but many edges can 
emanate from it, i.e. a vertex  that has a single ancestor and can have many 
descendants; 

3) A sheet is a vertex in which only one edge enters, but does not emanate 
any edge, i. e. a vertex that has a single ancestor, but does not have a single 
descendant. 

 
In the tree, the direction of the path passes from the root through the 

branches to the leaves. Inside the tree there can be several trees, which we will 
call subtrees. 

Now we can give the following recursive definition (with reference to 
itself): 

1. A recursive basis: the set {v} consisting of only one vertex v is a tree 
where its only vertex is both a root and a leaf. 

2. A recursive step: if v is a vertex and nAAA ,...,, 21  are trees, then we can 
construct a new tree in which the vertex v is the root, and the edges are the 
outgoing from this vertex and entering the tree roots nAAA ,...,, 21 . 

3. Recursive conclusion: Trees are obtained only via rules 1 and 2. 
 
From this definition it is clear that a tree is a hierarchical connected 

dynamic data structure, represented by a single root vertex and its descendants. 
The maximum number of descendants of each vertex determines the dimension 
of a tree. 

The tree definition can be represented as follows in Figure IV.1.2.1: 
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Figure IV.1.2.1. Definition of a tree. 

 
There are especially distiguised trees among the trees that are called binary 

trees. They can be defined as follows: 
A binary tree is a tree in which each vertex has at most two descendants. 

This vertex is called the parent vertex, and the descendants are called the left 
heir and the right heir. We give a recursive definition of a binary tree. A set of 
vertices is called a binary tree, if this set: 

- either contains nothing (empty set); 
- or consists of a root that connects to two binary trees, called a left-sided 

subtree and a right-side subtree. 
Thus, a binary tree is either empty, or consists of data and two subtrees, 

each of which can be empty. If both subtrees are empty at some vertex, then it 
is a leaf. Formally, a binary tree is defined as follows: 

<Bintree> :: = nil | (<Data> < Bintree > < Bintree >), 
where nil is empty. 

The trees solve the following tasks: bypassing of trees, searching a tree, 
adding a new vertex to the tree, destroying the tree top, comparing trees, etc. 

Binary trees are used in search algorithms: each vertex of the binary search 
tree corresponds to an element from some sorted set, all its left descendants - to 
smaller elements, and all its right descendants - to large elements. Each vertex 
in the tree is uniquely identified by a sequence of non-repeating vertices from 
the root and up to it – which is a path. The path length is the level of the vertex 
in the tree hierarchy. For practical purposes, two subsets of binary trees are 
usually used: a binary search tree (BST) and a binary heap. 

The binary search tree has the following properties: 
- the left subtree and the right subtree are binary search trees; 
- for all vertices of the left subtree of an arbitrary vertex v, the values of 

the data keys are less than the value of the data key of the vertex v itself; 
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- for all vertices of the right subtree of the same vertex v, the values of the 
data keys are greater than the value of the data key of the vertex v. 

Obviously, the data at each vertex must have the keys on which the 
comparison operation is defined. 

A binary heap or sorting tree has the following properties: 
- the value at any vertex is not less than the values at the vertices of its 

descendants; 
- the depth of the leaves (the distance to the root) differs by not more than 

one layer; 
- the last layer is filled from left to right. 
The heap of this type is called max-heap. There are also heaps where the 

value at any vertex, on the contrary, is not greater than the values of its 
descendants. Such heaps are called min-heap. 

 
Examples IV.1.2. 
1. A binary relation can be represented as an oriented graph as in figure 

IV.1.2.2, where the divisibility ratio over integers from 1 to 12 is shown: 2 and 
3 is divided by 1; 4 and 6 is divided by 2; 6 is divided into 2 and 3; 12 is 
divided into 4 and 6. 

 
Figure IV.1.2.2. Representation of a binary relation 

 
2. The representation of the binary tree is shown in Figure IV.1.2.3. 
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Figure IV.1.2.3. Binary tree. 

 
3. Bypassing the binary tree of the arithmetic expression ((3 + 1) * 3 / (9-

5) + 2- (3 * (7-4) +6) from below downwards and from left to right is shown in 
Figure IV.1.2.4. 

 
Figure IV.1.2.4. Tree traversal 

 
Tasks IV.1.2. 
1. Construct an oriented weighted graph to describe the structure of the 

identifier. 
2. Build a tree for the expression ((a / (b + c)) + (x * (y - z))). 
3. Determine the adjacency matrix A for the undirected graph, which is 

shown in Figure IV.1.2.5 and contains a loop around vertex 1 in which the 
application-specific element can be considered equal to either one (as shown 
below) or two. 
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Figure IV.1.2.5. Unoriented graph. 

 
4. On a finite set N = {1, 2, 3, 4, 5}, a relation 
R = {(1,2), (1,4), (1,5), (2,3), (3,2), (3,4), (4,4), (4,5) , (5.3), (5.4)}. 
For this relationship, write down the domain of definition and domain of 

values. Draw a graph of this relationship. Make for him an adjacency matrix 
and an incidence matrix. 

Help: 
1. Not derogating a generality, to facilitate the construction of the required 

graph, we will not consider letters, but only one letter and not digits, only one 
digit that will serve as the weights of the required weighted graph. 

2. In the corresponding binary tree, the leaves are the operands, and the 
remaining vertices are the operations. 

3. Matrix of adjacency 
 

 
 
 
Questions IV.1.2. 
1. How is the path formed in the graph? 
2. Which edges are called fold? 
3. Which vertex is called isolated? 
4. What is the degree of an isolated vertex? 
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5. What does the degree of the vertex mean? 
6. What graph is called cyclic? 
7. What is an incidence matrix? 
 
Tests IV.1.2: 
1. What are the types of graphs? 
A) an oriented graph, an undirected graph; 
B) an oriented graph, a certain graph; 
C) a certain graph, an undirected graph; 
D) a certain graph, an indefinite graph; 
E) an indefinite graph, an undirected graph. 
 
2. What is a tree? 
A) a graph without loops and without cycles; 
B) a graph without weights; 
C) a graph without networks and cycles; 
D) a weighted graph; 
E) a oriented graph. 
 
3. What is a binary tree? 
A) a tree in which each vertex has at most two children; 
B) a tree in which there are two vertices; 
C) a tree in which there is no cycle; 
D) a tree in which there is no loop; 
E) a tree in which one vertex has no direct descendants. 
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V. LANGUAGES, GRAMMAR AND AUTOMATONS 

V.1. Mechanisms of the generation of language 

V.1.1. Basic concepts of formal languages 

The basic concepts associated with formal languages are reviewed in this 
paragraph. 

Definitions V.1.1.1. 
1. An alphabet is a finite non-empty set of elements, called symbols 

(letters). Hereinafter, the alphabet will be denoted by uppercase (capital) Latin 
letters, and the elements – by    lowercase (small) letters. 

2. A word (chain) in a given alphabet is a finite sequence of elements of 
this alphabet. Hereinafter, the words will be denoted by lowercase Greek 
letters. 

3. A word that does not contain any symbols is called an empty word, and 
is denoted by the Greek letter ε. 

4. The length of the word ω is defined by the number of its symbols and is 
denoted by |ω|. Each symbol is counted as many times as it occurs in ω. The 
length of the empty word is zero, |ε|=0.  

5. If α and β are words in the alphabet T, then the word α ∙ β is called the 
concatenation of the words α and β, which is obtained by appending the word β 
to the end of the word α. In recordings the sign · is sually omitted and written 
simply αβ. 

6. If α is a word and n≥0 are positive integers, then α0 ⇌ ε и αn ⇌ 


n

 ...  (the sign of ⇌ is "equal by definition"). 

7. If  and ω are words in the alphabet T  and for some word ξ in T  the 
equality ω = ξ is fair, then the word  is called the prefix (the beginning) of 
the word ω and is denoted by ⟃ω, i.e. ⟃ω ∃ ∃ξ (ω = ξ). 

8. If  and ω are words in the alphabet T  and for some word ζ in Τ the 
equality ω = ζ is fair, then the word is called the postfix (end) of the word ω 
and is denoted by ⟄ω, i.e. ⟄ω ∃ ∃ζ (ω = ζ). 
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9. If  and ω are words in the alphabet T  and for some words ζ and ξ the 
equality ω = ζξ is fair, then the word  is called the subword of the word ω 
and is denoted by ⊆ω, i.e. ⊆ω ∃ ∃ζ ∃ξ (ω = ζξ). 

10. If  and ω are words in the alphabet T  and  is a subword of the word 
ω, then |ω| denotes the number of occurrences of the word  in the word ω. 

Note V.1.1.1. 
For any non-empty word ω in the alphabet T  and empty word ε, the 

relations ε⟃ω and ε⟄ω are satisfied. 
If T  is an alphabet, then the set of all chains (words) of finite length in this 

alphabet is defined as 

T* ⇌ ,
0




k

kT  

Where T0 ⇌ {ε} is the set of chains of length 0, Tk ⇌ 
k

TTT  ... is the set 

of chains of length k, and k≥1 are natural numbers. 
We denote by T  + the set of all possible non-empty chains, i.e.              T  + 

= T  * \ {ε}. For example, if T  = {a}, then the set T  + is defined as T  + = {a, 
aa, aaa, ...}. 

Obviously, not all chains from the set T  + can be meaningful units (words, 
phrases, phrases, sentences and texts) of some language. Note that meaningful 
units of the language can only be those chains that satisfy grammatical rules 
and have semantic meanings. Therefore, any concrete language T + is a proper 
subset of the set T+; L ⊂ T+. For example, if you take Kazakh letters and 
various special signs as elements of the alphabet T, then the Kazakh language 
will be a proper subset of the set T+, which contains only words, word 
combination, phrases, phrases, sentences and texts meaningful in the Kazakh 
language. 

Since each language is a set of chains of finite length in a given alphabet, 
we can consider operations of union, intersection, difference, complement, 
direct product, symmetric difference, concatenation and iteration of languages 
given over the same alphabet. 
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Definitions V.1.1.2. Suppose that two languages  L1 and L2 are given in 
the alphabet T, that is, L1⊆T+ and  L2⊆T+, and also U is a universe, then we can 
define: 

1. The union: L1∪L2 ⇌ {x:  x∈L1 ∨ x∈L2}; 
2. Intersection: L1∩L2 ⇌ {x:  x∈L1 & x∈L2}; 
3. Difference: L1 \ L2 ⇌ {x:  x∈L1 & x∉ L2}; 
4. Addition: L ⇌ {x:  x∈U &  x∉ L}; 
5. The direct product: :  L1×L2 ⇌ {(a, b):  a∈L1 & b∈L2}; 
6. Symmetrical difference: L1 Lɰ2⇌{x:  x∈(L1\ L2)∨x∈(L2\ L1)};  
7. Concatenation: L1·L2 ⇌ {a·b:  a∈L1 & b∈L2}; 

8. Iteration - Kleene star: L* ⇌ ,
0




k

kL   

where L0 ⇌ {ε}, Lk ⇌ 
k

LLL  ... , k≥1. 

Notes V.1.1.2. 
1. The set of words of finite length in the alphabet T  is a partially ordered 

set with the relation ≤ (≥) and all its chains are comparable in length with 
respect to ≤ (≥). 

2. The set of words of finite length in the alphabet T  is a partially ordered 
set with the relation ⊆ (⊇) and all subsets of words in the alphabet T   are 
comparable with respect to ⊆ (⊇). 

Definitions V.1.1.3. Let L⊆ T  *, then we can introduce the following 
notations and concepts: 

1. LR  - the operation of the language reference L is defined as LR = {R:  
L}. 

2. Pref(L) - the set of prefixes of L is defined as Pref(L) ⇌ {:  ∃ξ(ξ∈L & 
⟃ξ)}, where ⟃ is the prefix relation. 

3. Suf (L) - {: ∃ζ (ζ∈L & ⟄ζ)}, where ⟄ is the postfix ratio. 
4. Substr (L) - the set of all subwords (subchains) of the language L is 

defined as Substr (L) ⇌ {: ∀ξ (ξ∈L & ξ ≠ ε⇒⊆ξ)}. 
5. A function f: K → L is called a bijection if every element of the set L is 

the image of exactly one element of the set K with respect to the function f. 
3. The sets K and L are said to be equipotent if there is a bijection from K 

to L. 
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Examples V.1.1. Let the alphabet T  = {a, b, c, d} be given. Then: 
1) |a| = 1, |bb| = 2, |ccc| = 3, |abcd| = 4. 
2) If α = ccc and β = dddd, then αβ = cccdddd. 
3) ab2 = abb, (ab) 3 = ababab. 
4) If α = ab, β = abcd, ξ = cd, then β = αξ, i.e. α ⟃ β  
5) ε⟃abcd, a⟃abcd, ab⟃abcd, abc⟃abcd, abcd⟃abcd. 
6) abcd⟄ε, abcd⟄d, abcd⟄cd, abcd⟄bcd, abcd⟄abcd. 
7) If  = ca and ξ = da, then ⟃ω and ω = cada. 
8) If  = bbb, ζ = aaa and ξ = ccc, then ⊆ω and ω = aaabbbccc. 
9) If ω = abcdabcd and  = cd, then ⊆ω and  |ω| = 2. 
 
Tasks V.1.1: 
1. Let T  = {a, b} and L = {aa, ab} be given. Find L3. 
2. List the words of the language L1∩L2, where L1 = {(ab) n: n0} and L2 

= { ambm:  m0}. 
3. Let T  = {a, b, c}. L1 = {T:  || = 4} and     L2 = {T*:   ||c = 1}. 

Calculate the number of chains of the language L1 \ L2. 
4. Let the languages  L1 and L2 be given. Find the equivalence of 

languages 
  )( 21 LL R  and  LLR

21  .  

5. For L1 and L2, determine the result of their concatenation and join: 
L1 = {d, de, dee} and L2 = {ε, d, e, de, d}; 
L1 = {ε, d, de, dee} and L2 = {d, e, dee, d}; 
L1 = {ε, d, e, de, ded} and L2 = {ε, d, e, de, ed}; 
L1 = {d, e, dd, de, ee, ded} and L2 = {d, e, dd, de, ed}. 
L1 = {d, e, ded, ddde, eedd} and L2 = {d, e, ddd, ded, eee}. 
6. Let L = {abcd, ad} be a language in the alphabet {a, b, c, d}. Find the 

set of all subwords of this language Substr (L). 
7. Let L = { akbmcn:  k≤m≤n} be a language in the alphabet {a, b, c}. Find 

the set of all subwords of this language Substr (L). 
 
Questions V.1.1: 
1. Is there such a language L that 
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L* ≠ {xn:   xL, n0}? 
3. Is there such a language L that  
(LR)* ≠ (L*)R ? 
3. Let the alphabet T  = {a, b, c, d} be given and the language L= {T*:   

||a=1 & ||b=1}. Is it true that abcdcacdcabbacbaL*? 
 
Tests V.1.1: 
1. Let the languages  L1 = {aa, bb}, L2 = {cc, dd} be given, then what will 

the concatenation of these languages be L1 · L2? 
A)L1·L2 = {aacc, aadd, bbcc, bbdd}. 
B)L1·L2 = {aaaa, dddd, bbbb, cccc}. 
C)L1·L2 = {aabb aacc, bbaa, ddaa}. 
D)L1·L2 = {aadd, bbdd, ccdd, dddd}. 
E)L1·L2 = {aacc, aabb, aadd, aacc}. 

 
2. Let the language L = {amban: m≤n} be a language in the alphabet {a, 

b}, then which contains the set of all its sub-chains? 
A) chains b, ba, aba, baa, abaa, baaa, aabaa, abaaa, and so on. 
B) the chains a, ab, bab, abb, abab, aaaa, aaaab, abbaa, and so on. 
C) the chains aa, ab, ba, aaa, aabb, bdaa, aabba, abbba, and so on. 
D) chains b, bb, ba, baba, abba, bbaa, abbaa, abbba, and so on. 
E) chains b, aa, ab, baab, abba, baab, abbba, abbbb, and so on. 
 
3. Let the language L = {abn:  n0} be given in the alphabet {a, b}, then 

which contains the set of all its sub-chains? 
A) chains a, ab, abb, abbb, abbbb, abbbbb, and so on. 
B) chains a, ab, abb, abbb, abbbb, abbbbb, and so on. 
C) chains a, ab, abb, abbb, abbbb, abbbbb, and so on. 
D) chains a, ab, abb, abbb, abbbb, abbbbb, and so on. 
E) chains a, ab, abb, abbb, abbbb, abbbbb, and so on. 
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V.1.2. Formal grammars 

Formal grammar is an important class of mechanisms for generating 
languages. The American linguist Chomsky firstly introduced formal grammar 
in 1959. 

In the formal grammar generating the language L, two disjoint sets of 
symbols are used: 

1) a finite set of terminals that are constant values of T, from which chains 
of the language L are formed; 

2) the finite set of nonterminals variables N that do not intersect with the 
set T and denote grammatical concepts, categories, etc. Language of L. 

3) The process of generating chains of language L is described by a finite 
set of rules of substitution (rewriting rule) P, each of which consists of pairs of 
chains (α, β). In such a pair, the first component α is a chain containing at least 
one nonterminal, and the second component can be any chain formed from 
terminal and / or nonterminal symbols. It can be an empty chain. 

Agreements V.1.2. The following agreements are accepted: 
(1) lowercase Latin italic letters a, b, ..., z and the Arabic numerals 0, 1, ..., 

9 denote terminals; 
(2) uppercase Latin italic letters A, В, …, X, Y, Z denote nonterminals, 

where S denotes the initial nonterminal symbol; 
(3) the lowercase Greek letters α, β,..., ω denote chains that can contain 

both terminals and nonterminals; here ε is an empty chain; 
(4) the substitution rule, which is a pair of chains (α, β) from the set P, can 

be written as α → β; 
(6) rules of the form α → ε are called ε (epsilon) -rules; 
(7) these agreements also apply to letters with lower and upper indices; 
(8) rules of the form α1α2…αm→β  is an abbreviation of m rules of 

the form α1→β, α2→β, …, αm→β or rules written in the column as follows: 
 

α1→β 
α2→β 

… 
αm→β 
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 (9) rules of the form α→β1β2…βn  is an abbreviation of n rules of the 
form α → β1, α → β2, ..., α → βn or: 

α→β1 
α→β2 

… 
α→βn 

 (10) a rule of the form α1α2…αm→β1β2…βn is an abbreviation 
of m × n rules obtained from the agreement (6) and (7). 
 

Definition V.1.2.1. The formal quadrangle G = <T, N, P, S> is called the 
formal grammar, where: 

T is a non-empty finite set of terminal symbols (terminals); 
N is a non-empty finite set of nonterminal symbols (nonterminals), where 

T ∩ N = Ø, t is an empty set; 
P is a non-empty finite set, the substitution rule is of the form α → β, 

where αT ∪ N*NT ∪ N*,  βT ∪ N*, that is, 
P ⊆ {(α,β): αT ∪N* T ∪N* &βT∪N*}; 
S - initial nonterminal, SN. 
The rules for deriving grammar can be considered as elementary 

operations, which, when applied in a certain sequence to the original chain, 
generate only right chains. The sequence of rules used in the process of 
generating a certain chain is its derivation. 

A language defined by a (generated) grammar is a set of finite chains that 
consist only of terminals. All these terminal chains are derived starting with 
one particular chain consisting of only one initial nonterminal S. 

To define a language using grammar, the concept of a deducible chain and 
the relation of direct derivability are applied. 

 
Definitions V.1.2.2. 
1. In the grammar G = <T, N, Р, S> the resulting chains are recursively 

defined as follows: 
1) S - deducible chain of grammar G; 
2) If αβγ is a deducible grammar chain of G and there is a rule β→ in P, 

then αγ is also a deducible grammar chain G. 
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2. A derivable chain of G that does not contain nonterminal symbols from 
N is called a terminal chain generated by the grammar G. 

3. If α = γξδ, β = γηδ and α → β, ξ → η are the rules for deriving the 
grammar G then we say that there is an established direct derivability between 
the chains α and β. This means that in the grammar G the chain β is directly 
deduced from chains α via replacing ξ by η and denoting this relation via 
α⇒Gβ. If the grammar is known in advance, the index G with respect to the 
direct derivability is omitted and this relation is written as α⇒β. 

A record of the form α⇒kβ is the kth power of the ratio α⇒β, if there are k 
+ 1 chains α0, α1, ...,αk such as α=α0, αk=β  и  αi–1 ⇒αi (1 i  k). This 
sequence of chains is called the derivation of the length k of the chain β from 
the chain α in the grammar G. 

 This sequence of chains is called the derivation of the length k of the 
chain β from the chain α in the grammar G. 

If there exists i1 (or i0) the relation α⇒iβ is satisfied, then it is written 
as α⇒+ β (or α⇒* β). Here ⇒+denotes the transitive closure of the relation ⇒, 
and by ⇒* the reflexive and transitive closure of the relation ⇒. In this case, a 
record of the form ⇒+ (⇒*) is read as: "  is derivable from  in a 
nontrivial way" ("  is deducible from "). 

 
Note V.1.2.: α⇒*β if and only if α⇒iβ for some i0, and α⇒+β if and only 

if α⇒iβ for some i1. 
 
Definitions V.1.2.3. 
1. Each chain, which is derived from the initial nonterminal of the 

grammar, is called the sentential form. 
2. Derived chains that do not contain nonterminal symbols are called 

terminal chains. Therefore, the language L(G) can be defined as the set of 
terminal chains deducible in the grammar G. 

3. The language L(G) generated by the grammar G is the set of terminal 
chains that are derived from one initial nonterminal S by applying a 
substitution rule from the set P, that formally is written as 

L(G)⇌{τ:  τ T*, S⇒*τ}. 
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This means that any chain L(G) belonging to the language is a sentential 
form. 

 
Examples V.1.2. 
1. Let the parent algebraic expression in the infix record be generated 

using the grammar G = <T, N, P, S>, where 
T = {+,  –, /, *, (, ), a}, N =  {S, E, T, F},  
P = {S→E, E→E+T | E–T | T, T→T*F|T/F|F, F→a|(E)}. 
2. Grammar with rules Р1 = {S→01S, S→0} and a grammar with rules Р2 

= {S→0A, A→10A, A→ε} are equivalent. 
3. Two grammars for generating algebraic expressions formed by the 

operands i, n and operations +, * with the same terminal symbols T = {i, n, (,), 
+, *} and nonterminal symbols N = {S, F, H}, but with different rules: 

P1 = {S → S + F, S → F, F → F * H, F → H, F → H, H → i, H → n, H → 
(S)} and 

Р1 = {S→S+F, S→F, F→F*H, F→H,F→H, H→i, H→n, H→(S)}are 
equivalent. 

 
Tasks V.1.2: 
1. Construct all sentential forms for grammar with rules: 
     S→A+B|B+A, A→a,  B→b  
2. Construct the output of a given chain a-b * a + b for a grammar with 

rules: 
                S→K|F+S|K–S, K→F|F*K, F→a|b. 
3. Construct the output of a given chain aaabbbccc for a grammar with 

rules: 
S→aSBC|abC, CB→BC, bB→bb, bC→bc, cC→cc. 
4. Describe the language generated by grammar 
 S→FF, F→ aFb, F→ab. 
5. Describe the language generated by grammar 
        S→Sc, S→A, A→aAb, A→ ε.  
6. Describe the language generated by grammar 
                S→ε, S→a, S→b, S→aSa, S→bSb. 
V.1. Describe the language generated by grammar 
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        S→SA, SAA→ASb, ASA→b, A→a. 
8. Describe the language generated by grammar 
        S→aSA, S→abc, bA→bbc, cA→Aa. 
9. Describe the language generated by grammar 
        S→aAS, S→B, Aa→aaA, AB→B, B→a. 
 
Questions V.1.2. 
1. What is a chain prefix? 
2. What is a postfix chain? 
3. If ω = abcdabefabhgabik and  = ab, then what is |ω|? 
4. How is the set of all chains determined? 
5. What is a language in a given alphabet? 
6. How is it determined? 
7. How is L1 \ L2 defined? 
8. How is L1  ɰL2 defined? 
9. How is L1 · L2 defined? 
10. How is L+ 
11. What is L0? 
12. What is Lk? 
13. How is the LR language reference constructed? 
14. Does there exist a language L such that (LR)* ≠ (L*)R? 
15. How is the prefix Pref (L) of the language defined? 
16. How is the postfix Suf (L) of the language defined? 
17. How is Substr (L) defined? 
 
Tests V.1.2. 
1.How is the alphabet of formal languages correctly defined? 
A) some finite set of symbols; 
B) any finite sequence of symbols; 
C) a subset of chains of finite length; 
D) a set of tokens that can represent a particular token in the source 

program 
E) the set of all comparison operators 
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2. How to correctly define chains in the alphabet V? 
A) some finite set of symbols; 
B) any finite sequence of symbols of the alphabet V; 
C) a subset of chains of finite length of the alphabet V; 
D) a set of tokens that can represent a particular token in the source 

program; 
E) the set of all comparison operators. 
 
3. What is denoted by |α|? 
A) length of the alphabet line; 
B) a finite set of symbols; 
C) a sequence of symbols; 
D) the language of the alphabet V; 
E) the length of the chain. 
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V.1.3. Regular sets and regular expressions 

Let Ø be an empty set, {ε} be the set of empty chains, T a finite alphabet, 
and t a symbol from T, that is, TT. Then we can give the following 
definition. 

Definition V.1.3.1. The regular set in the alphabet T is defined recursively 
as follows: 

Recursion basis: 
(1) t is a regular set in the alphabet T; 
(2) {ε} is a regular set in the alphabet T; 
(3) {t} is a regular set in the alphabet T; 
Recursive extension: If P and Q are regular sets in the alphabet T, then the 

regular ones are: 
(4) P · Q is the concatenation of the sets P and Q; 
(5) P ∪ Q is the union of the sets P and Q; 
(6) P * is the iteration of the set P; 
Recursive conclusion: 
The regular set in the alphabet T is determined only by the rules (1) - (6). 
Thus, a set in the alphabet T is regular if and only if it is either t, or {ε}, or 

{t} for some tT, or it can be obtained from these sets by applying a finite 
number of join, concatenation, and iteration operations. 

Definition V.1.3.2. Regular expressions describing regular sets in a finite 
alphabet T are defined recursively as follows: 

Recursion basis: 
(1) ϕ is a regular expression that defines a regular set t in the alphabet T; 
(2) ε is a regular expression that defines a regular set {ε} in the alphabet T, 
(3) if tT, then t is a regular expression that specifies 
A regular set {t} in the alphabet T; 
Recursive extension: 
If p and q are regular expressions denoting regular sets P and Q in the 

alphabet T respectively, then: 
(4) p ∙ q is a regular expression defining P · Q in the alphabet T; 
(5) p∨q is a regular expression that specifies P∪Q in the alphabet T; 
(6) p* is a regular expression defining P * in the alphabet T; 
Recursive conclusion: 
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Regular expressions are defined only by rules (1) - (6). 
To build a regular expression, the operation concatenation , operation 

disjunction ∨ and operation iteration * were used. The highest priority is given 
by the operation *, then goes to , and the operation ∨ is the last. Usually, the 
sign of the operation  is omitted in the record of the regular expression. 

We will use the notation р+ for the abbreviated designation of the 
expression рр* and, in addition, we will remove the excess brackets from the 
regular expressions where this can not lead to misunderstandings. For example, 
the regular expression 0∨10 * means (0∨ (1 (0 *))). 

For each regular set, you can find at least one regular expression that 
specifies this set, and conversely, for each regular expression, you can 
construct a regular set, which is denoted by this expression. 

Note that for every regular set there are infinitely many regular 
expressions that designate it. 

We say that two regular expressions are equal if they denote the same set. 
For an equivalent transformation there are algebraic laws. 

In the practical description of lexical structures, it is useful to match 
certain names to regular expressions, and to refer to them by these names. To 
determine such names, we will use a record of the form 

d1 = r1 

d2 = r2 

... 

dn = rn 

where di are different names, and each ri is a regular expression over the 
symbols T ∪ {d1, d2, ..., di-1}; Symbols of the main alphabet and previously 
defined symbol-names. Thus, for any ri, we can construct a regular expression 
over T, repeatedly replacing the regular expression names with the regular 
expressions they designate. 

If α, β, γ are regular expressions other than φ and ε, then: 

 )1(  

 )2(  



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

134 
 

 )3(  

 )4(  

 )5(  

 )6(  

  )()()7(  

  )()()8(  

  )()9(  

  )()10(  

 *)11(  

 *)12(  

**)13(    

**)*()14(    

 
Examples V.1.3. 
1. The regular expression (0∨1) * 011 defines a regular set of all chains 

consisting of 0 and 1, ending in the chain 011. 
2. The regular expression а(а∨0)*  defines a regular set of all chains from 

{0, a}* starting with a. 
3. The regular expression (а∨b)(а∨b∨0∨1)* defines a regular set of all 

chains from {0, 1, a, b} * starting with a or b. 
4. The regular expression ((00∨11)*  ((01∨10)  (00∨11)*  (01∨10)  

(00∨11)*)* defines the regular set of all chains of zeros and ones containing 
even Number of zeros and an even number of ones. 

5. The regular expression a(a∨b)*  defines the set of all possible chains 
consisting of a and b, starting with a. 

6. The regular expression (a∨b)*(a∨b)(a∨b)*defines the set of all non-
empty chains consisting of a and b, i.e. Set {a, b}+. 



НИ
И 

Ис
ку

сс
тв

ен
ны

й 
ин

те
лл

ек
т

135 
 

7. The regular expression  defines the set of all chains consisting of 0 and 
1, whose lengths are divided by 3. 

8. The regular expression ε∨φ defines the set {ε}⋃Ø. 
9. Sets of numbers in decimal notation: 
Digit = 0∨1∨2∨3∨4∨5∨6∨7∨8∨9; 
Integer = Digit+; 
Fraction =Integer∨ε; 
Exponent = (E(+∨-∨ε)Integer)∨ε. 
 
Tasks V.1.3. 
1. Find the regular expression that specifies the set {a, b}*. 
2. Find the regular expression that specifies the set {a, bc*}*. 
3. Find the regular expression that specifies the set {ab, cd}*. 
4. Find the regular expression that specifies the set {ab, b}*. 
5. Find a regular expression that specifies the set {a*, b*}* 
6. Find a regular expression for the language 
{ ω ∈ {a, b}* :  (|ω|a − |ω|b)...3}. 
7. Find a regular expression for the language 
{ ω ∈ {a, b}* :  (|ω|a − |ω|b)...4}. 
8. Find a regular expression for the language L1 ∩ L2 ∩ L3, where 
L1= (aaab∨c∨d)*, L2 = (a*ba*ba*bc∨d)*, L3 = ((a∨b)*c(a∨b)*cd)* 
1. Simplify the regular expression ((a∨b∨ab)*. 
2. Simplify the regular expression (a*b)*∨(b*a)*. 
3. Simplify the regular expression (ba∨a * ab)*. 
4. Simplify the regular expression a(ε∨a)∨b. 
 
Questions V.1.3. 
1. How is the regular expression defined in the alphabet T defined? 
2. Which set defines the regular expression  
(ab) +? 
3. Which set defines a regular expression  

(aa∨bb)? 
4. What set defines a regular expression 
a(ε∨a)∨b? 
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5. Which set defines a regular expression 
a(a∨b)*? 
6. Which set defines the regular expression *? 
7. Which set defines a regular expression 
((a∨bc)* a)? 
8. Which set defines a regular expression 
(c(ab∨cd)*)? 
9. Which set defines a regular expression ϕ? 
10. Are the regular expressions ((a∨b)*∨aa)* and (aa∨b∨ab)* equal? 
11. Are the regular expressions (aa∨b∨ab)*and (a∨b)*(a∨b)* equal? 
12. Are the regular expressions (b∨cd*a)*cd* and b*c(d∨ab*c)* equal? 
13. How can I simplify the following regular expressions: 
(00*)0 ∨ (00)*?  
(0 ∨ 1)(ε ∨ 00)+ ∨ (0∨1)?  
 (a ∨ b)(ε ∨ ab)+ ∨ (b∨a)?  
(aa ∨ ε)(a ∨ b) ab? 
 ab (a ∨ b) (aa ∨ ε)? 

14. Will the given regular expressions (p*q*)* =(q*p*)* be equivalent? 
15. Will the given regular expressions p(qp)* и  (pq)*p  be equivalent? 
16. Will the given regular expressions p*(p∨q)*, (p ∨ qp*)* и (p∨q)* be 

equivalent? 
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Tests V.1.3. 

1. What regular set defines a regular expression (a∨b)* ? 
A) {a, b}* 
B) {aa, b}* 
C) {aaa, b}* 
D) {a, bb}* 
E) {a, bbb}* 

 
2. What regular set determines the regular expression a(ε∨a) ∨b? 

A) {a, b, aa} 
B) {a, a, aa} 
C) {b, b, bb} 
D) {a, b, bb} 
E) {aa, bb, aa} 

 
3. What regular set defines a regular expression ϕ*? 

A) {ε} 
B) {ε, ε} 
C) {ε, ε, ε} 
D) {ε, ε, ε, ε} 
E) {ε ε, ε, ε, ε} 
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V.2. Mechanisms of language recognition 

V.2.1. Finite automatons 

Usually under the term “automaton” we understand a device which, once 
turned on, can perform a number of given operations on its own. However, we 
deal with an abstract automaton used as a mathematical model of any digital 
(discrete) devices in which all signals are quantized in level, and all actions are 
quantized in time.  

An abstract automaton (hereinafter – automaton) can distinguish a set or 
transform a set into another set; it consists of a tape, a head unit and a 
controller device; it may also have working memory (Figure V.2.1). 

может иметь  рабочую память (см. рисунок V.2.1). 

 

 

 

 

 

 

 

 

Tape – a linear sequence of cells, each of which can store only one symbol 
from a certain finite input (output) alphabet.  

The tape is infinite, but at each given moment only a finite number of cells 
is occupied. Special markers denoting the beginning and end of the tape may 
occupy the boundary regions to the left and right of the occupied cell area. The 
marker may be just at one end of the tape or be absent altogether.   

Input (output) head unit – a device which can view only one tape cell at 
any given moment of time. The head unit can shift one cell to the left or to the 
right, or remain immobile. It is generally assumed that the head unit is read-

F V.2.1 Composition and structure of the finite automaton. 

⊢,  
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only, i.e. during the work of the automaton the symbols on the tape do not 
change. But it is also possible to consider automatons that possess a head unit 
which both reads and writes. Thus, the head unit may perform both reading and 
writing operations. 

Working memory – an auxiliary storage for reading and writing data. 
Working memory may be organized as a dynamic data structure (queue or 
stack).  

Controlling unit – a device which governs the automaton’s behavior 
and has a finite internal memory for storing a finite number of states. It 
governs the automaton’s behavior by means of a function (relation) 
which describes how the states change depending on the current state and 
current input symbol that is red by the head unit, and the current 
information extracted from the working memory, if available. The 
controlling unit also determines the direction of the shift of the head unit 
and the information to be entered in the working memory.  

The automaton is determined by the input of a finite set of states of the 
controlling unit, finite set of accepted input symbols, the source state and the 
set of final states, as well as the state of transition function, which by using the 
current state and current input symbol as its arguments indicates all possible 
next states or values of this function. The work of the automaton may be 
conveniently described by means of its configuration. The automaton’s 
configuration includes: 

- controlling unit’s state; 
- contents of the input tape and the position of the input head unit; 
- contents of the working memory and the position of the working head 

unit if available; 
- contents of the output tape if available.   
The automaton’s configuration can be initial, current and final.  
In its initial configuration the internal memory contains a previously 

entered symbol denoting the initial state of the controlling unit; the controlling 
unit is in the initial state; the head unit reads the leftmost input symbol on the 
tape; if working memory is available, it contains preconfigured initial contents.  

In its current configuration the internal memory contains previously 
entered symbols of current states of the controlling unit; the controlling unit is 
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in one of its current states; the head unit reads neither the leftmost nor the 
rightmost current input symbol; if working memory is available it has 
preconfigured current contents. 

In its final configuration the internal memory contains previously entered 
symbols denoting the final states of the controlling unit; the controlling unit is 
in one of its final states; the head unit views the right end marker or, if the 
marker is not available, it leaves the input tape; if working memory is available 
then it satisfies certain conditions.     

Prior to its inception the automaton is its initial configuration, i.e. the 
symbol denoting the initial state of the controlling unit is entered in the internal 
memory, the input chain is entered in the input tape; if working memory is 
available, corresponding data is entered in the memory.  

The automaton uses a program consisting of a finite sequence of steps. 
Each step consists of the current (initial) and next (final) configuration.  

At the step’s beginning the memory reads the symbol of the current 
state of the controlling unit, the input tape reads the current input symbol; 
the information in the working memory, if available, is also read. Then, 
depending on the current state and read information the automaton’s 
actions are determined: 

(1) Input head unit moves to the right, left or remains in place; 
(2) A new symbol is entered in the current cell of the input tape or the 

previous symbol is not changed; 
(3) Some information, if available, is entered in the working memory; 
(4) A symbol is entered in the output tape, if the tape is available. 
(5) The controlling unit moves into another state and the number (symbol) 

of this state is entered in the internal memory. 
As a result, during one step of the automaton the input head unit can move 

one cell to the left, right or remain in its place. As the automaton functions, the 
contents of the input tape cells do not change, but the contents of the output 
tape cells and the working tape cells can.    

If the automaton views the input chain and executes a sequence of steps 
starting from the initial configuration and finishing in a final configuration, 
then it recognizes the chain.  
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A language recognized by the automaton is a set of chains that the 
automaton recognizes.  

Examples V.2.1.1: 
1. A public pay telephone may serve as an example of automaton: it 

recognizes the input of a coin and enters the dial number state. 
2. An ATM is an automaton: it recognizes an inserted card and enters the 

pin-code input state. 
3. A subway ticket gate is an automaton: it recognizes a token and enters 

the open gate state.  
Finite automatons recognize regular languages. First, formal 

definitions of indeterminate and determinate finite automatons are given, 
then the languages they recognize are described, followed by the proof of 
their equivalency.   

Finite automatons are among the simplest and most widespread 
recognizing machines. A finite automaton contains output tape, internal 
memory, external memory, head unit and controlling unit.  

Finite automaton may be indeterminate or determinate, but its head 
unit must be one-way only and move only to the right. Their formal 
definitions are as follows:  

Definition V.2.1.1. Indeterminate finite automaton (IFA) is 
determined by the seven element set M = <Q,Т,I,F,⊢,⊣,Δ> where: 

Q – finite set of states of the controlling unit;  
T– finite set of input symbols, Q∩T=Ø; 
I – set of initial states of the controlling unit, I⊆Q; 
F– set of final states of the controlling unit indicating that the input chain 

is recognized,F⊆Q; 
⊢, ⊣ – tape start and end markers ⊢, ⊣T; 
Δ–set of relations of transition Δ⊆QT*(Q),  (Q) – set of all subsets 

of the set Q.  
The determined finite automaton (DFA) is a special case of IFA.  
Definition V.2.1.2. Finite automaton M = <Q,Т,I,F,⊢,⊣,Δ> is called 

determined, if:  
(1) The set of initial states I contains exactly one element; 
(2) For each transition <q, τ, p>∈Δ |τ|=1 holds true; 
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(3) For each state q∈Q and for each symbol t∈T there exists no more than 
one state p∈Q with an attribute <q, t, p>∈Δ; 

(4)  Other symbols are identical to IFA.   
Notes V.2.1.1: 
1. Sometimes instead of the set of relations of transition Δ taking logical 

values “true” or “false”, the function of transition δ is used which takes value 
as a symbol of the set Q, where δ:  QT*→ (Q)  in the case of IFA and δ:  
QT*→ Q in the case of DFA. From the function δ it is easy to arrive at 
the relation Δ by assuming  

Δ = {<q, τ, (q, τ)>:  qQ, τT*} 
2. Henceforth we shall use both relations of transition and functions of 

transition depending on the context without making particular mention. For any 
qQ,pQ и τT* we may use:  

1)For relations of transition: <q,τ,{p}>for IFA, <q,τ,p>for DFA; 
2)For function of transition: (q,τ)={р}for IFA,(q,τ)=p  for DFA.   
3. If we want to use the function of transition instead of the relation of 

transition, then in the formal definition FA it is necessary to substitute the 
symbol Δ with δ, and leave other symbols unchanged at their previous values, 
i.e. we obtain  M = <Q, T, I, F, ⊢,⊣,δ>. 

The FA transition may be illustrated as a diagram, in which each 
state is denoted with a circle and transition with an arrow. An arrow from 
the state qQ to the state pQ denoted with a chain τT* indicates that <q, 
τ, p> (or (q, τ) = p) is a transition within the given IFA. Each initial state may 
be recognized by a short arrow leading to it. Each final state is indicated with a 
double circle.  

1. Are the following grammars equivalent?  
S→ab, S→aKSb, K→bSb, KS→b, K→ε 

and 
S→aAb, A→ε, A→b, A→S, A→bSbS  

2. Are the following grammars equivalent?  
S→aD, D→bba, D→baDa, D →aDaDa   

and 
S→aaE, S→abD, E→bDD, D→aaEa,D→abDa,D→ba? 

3. What class does the following grammar belong to?  
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S→abba, S→baa? 
4. What class does the following grammar belong to?  

S→AD, A→aA, A→ε, D→bDc, D→ε 
5. Is the grammar with the rules  

S→AB, A→a|Aa,A→a|Aa 
equivalent to the grammar with the rules 

S→AS|SB|AB, A→a, B→b? 
6. Is the grammar with the rules   

S→cE, E→ddc,E→dcEc,E→cEcEc 
equivalent to the grammar with the rules 

S→ccA, S→cdB,A→dBB,B→ccAc,B→cdBc,B→dc? 
How should one describe in unambiguous grammar a language generated 

by the ambiguous grammar Ε→E+E|E*E|(E)|i? 
Examples V.2.1.2: 
1. For FA M1 with one transition and parameters:  Q={q,p}; T*={τ}, 

I={q}, F={p}, (q,τ)=p the diagram is shown in the figure V.2.1.2. 
 
 
 

 
2. Let FA M2 have the following parameters:  Q={1,2}, T={a,b},        I 

={1}, F ={2}, Δ={<1, aaa, 1>, <1, ab, 2>, <1, b, 2>, <2, ε, 1>}. Figure 
V.2.1.3 shows a diagram of transitions of IFA M2, in which regular 
expressions aaa, ab, b,ε are used as arc markings. Such conception makes 
construction of the diagram easier and renders it compact and intuitive. 
 
 
 
 
 
 
 

КА M3 for recognition of identifiers consisting only of letters and 
numbers and starting with a letter will have the following parameters: 

q p 
τ 

Figure V.2.1.2. Diagram FА M1 with one transition. 

1 2 

aaa 

Figure V.2.1.3. Diagram FА M2 with regular expressions. 

ab 

b 

ε 
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Q={1,2}, T={b,d}, I={1}, F={2}, (1,b)=2,(2,b)=2,(2,d)=2, where b – 
letter, d – number. The diagram FA M3 is shown in the figure V.2.1.4. 
 
 
 
 
 

 
 
Note V.2.1.3. If a diagram contains several transitions with the same 

starting and ending point, they are called parallel transitions. Parallel 
transitions are indicated in a diagram with a single arrow. The markings of 
transitions are separated with commas. In figure V.2.1.5 a diagram FA M4 
is shown with parallel transitions for chains ab, b. 
 
 
 
 
 
 
 

 
The FA transitions may be represented as functions by means of a 

table or commands.  
Convention V.2.1.1.Among all FA states the initial state qs and final 

state qf stand out; here s and f are understood not as numeral variables but as 
mnemonic marks of start (start) and end (final). 

Examples V.2.1.3. In the table V.2.1.1 the function of transition δ  FA 
M5 is shown determined by the sets Q = {qs, q1, q2, q3} and  T= {t1, t 2, t 3}. 

Table V.2.1.1. Values of the function of transition  FA M5. 
 Input 

t1 t2 t3 
 qs q2 q2 q2 

Figure V.2.1.4. Diagram FА M3 for identifier. 

1 2 

b 

b 

d 

Figure КА V.2.1.5. Diagram FА M4. with parallel transitions. 

1 2 

aaa 

ab,b 

ε 
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State q1 q3 qs qs 

q2 q2 q2 q2 

q3 q3 q2 qs 

 
The function of transition in the table V.2.1.1 may be represented as 

commands in the following way:  
(qs, t1) = q2, (qs, t2) = q2,(qs, t3) = q2, 
(q1, t1) = q3, (q1, t2) = qs,(q1, t3) = qs, 
(q2, t1) = q2, (q2, t2) = q2,(q2, t3) = q2, 
(q3, t1) = q3, (q3, t2) = q2,(q3, t3) = qs. 

 
Let FA M be given with initial state qsQ,current state qQ, final state 

qfQ and unused current input chain τT*. Then the following description 
may be given. 

Definitions V.2.1.3: 
1. If the head unit views the leftmost symbol of the input chain, then the 

pair (qs,τ)QT* is called initial configuration FA ; 
2. If the head unit views the current symbol of the input chain τ, then the 

pair (q,τ)QT* is called current configuration FA ; 
3. If the input chain τ has been read completely, then the pair    (qf, 

ε)QT*  is called final configuration FA ; 
Note V.2.1.4. By its contents the configuration is an “instantaneous 

description” of FA . Assuming that the initial chain whose belonging to the 
language under discussion is to be verified is in the tape, then in the 
configuration (q,τ) the chain τ is the part of the initial chain which remains in 
the tape.  

The step of FA is determined by the state of the controlling unit and the 
input symbol being viewed at that moment. The step itself consists in the 
change of state of the controlling unit and the shift of the head unit one cell to 
the right.  

The Step FA M is yielded by the binary relation ╞M, determined over 
its configurations in the set QT*. If the automaton is known, then the 
letter M in the relation ╞M may be omitted. 
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Let tT be the leftmost symbol of the input chain still not read and 
both for qQ and pQ <q, t, p>Δ holds true; then for the chains τT* the 
relation (q, tτ)╞ (p, τ) is true which determines the step of the automaton; 
this means that the automaton is in the state q and the state unit is viewing 
the symbol t in the input tape; then FA M moves into the state p and the 
head unit moves one cell to the right. If τ= ε, then the input chain is 
considered to have been read completely. 

Examples V.2.1.4. Let τ = abba. Then in the diagram FA M2 in the 
figure V.2.1.2 there is a step determined as relation (1, abba)╞ (2, ba).  

Definition V.2.1.4.╞k is the k–th degree of relation╞, if a chain of k+1 
configurations exist 

(q0,τ0), (q1,τ1), (q2,τ2),…, (qk–1,τk–1), (qk,τk) 
so that for any i (1 i k)  the relation is true 

(qi–1,τi–1)╞ (qi,τi), where q0=qs, τ0=τ, qk= qf,τk=ε. 
If for any i1 or i0 (q0,τ)╞i(qi,ε) holds true, then we may write 

(q0,τ)╞+(qi,ε) or (q0,τ)╞*(qi,ε) correspondingly. Here by╞+ is denoted the 
transitive closure of relation ╞, and by ╞* – the reflexive and transitive 
closure of relation. 

Definition V.2.1.5. Automaton M recognizes input chain τ, if the relation 
(qs,τ) ╞* (qf,ε) holds true. 

Examples V.2.1.5. Let τ = aaaab. Then in FA M2 in the figure V.2.1.3 
following relations (1, aaaab)╞(1, ab) and (1, ab)╞ (2, ε) hold true. 

Definition V.2.1.6. If the language L consists only of input chains 
recognized by automaton M, then this language is recognized by automaton M 
and is denoted as L(M), i.e.  

L(M)⇌{τ:  τT*  &  (qs,τ)╞*(qf,ε)}. 
Examples V.2.1.6.  Let for M6=<{qs,q1,qf},{0,1},qs,{qf},⊢,⊣,> 
there exist the following transition relations:  

<qs,0,{q1}>,<qs,1,{qs}>,<q1,0,{qf}>,<q1,1,{qs}>,<qf,0,{qf}>,<qf,1,{qf}> 
FА M6 recognizes all chains of zeroes and ones in which there are two 

zeroes in a row. The conditions may be interpreted in the following way:  
qs–initial condition indicates that “two zeroes in a row have not been 

detected and the initial symbol is a zero”; 
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q1–state indicates that “two zeroes in a row have not been detected and the 
initial symbol is a zero” 

qf– final condition shows that “two zeroes in a row have been detected”.  
It may be noted that FA M6, once entering the state qf, remains in that 

state. 
For the initial chain 01001 the only possible chain of configurations 

starting from configuration (q0, 01001) will be  (qs,01001)╞ (q1,1001)╞ 
(qs,001)╞ (q1,01)╞ (qf,1)╞ (qf, ε). 

Thus, 01001L(M6).  
The diagram of this automaton is shown in the figure V.2.1.6. 

 
 
 
 
 
 
 

Definitions V.2.1.7: 
1.  Path FA is a tuple <q0, r1, q1, r2,…, qn>, where n≥0  and ri = <qi–1, τi, 

qi>∈Δ for each i, 1≤i≤n.  Here q0 – beginning of the path,qn – end of the path, 
τ1...τn – mark of the path, n – length of the path.  

2. A path is called successful if its beginning belongs to I and its end 
belongs to F.  

Note V.2.1.5. For any state q∈Q there exists a path<q>. Its mark ε, 
beginning and end coincide.  

Examples V.2.1.7. Let us consider FA M2  in the figure V.2.1.2 Let τ = 
baaab. Then the path 

 <1,<1,b,2>,2,<2,ε,1>,1,<1,aaa,1>,1,<1,b,2>,2> is successful. Its mark is 
baaab, and its length is 4, i.e.: q0=1, q1=2, q2=1, q3=1, q4=2; 

r1=<1,b,2>, r2=<2,ε,1>, r3=<1,aaa,1>, r4=<1,b,2>; 
τ1=b, τ2=ε, τ3= aaa, τ4= b. 
Using the concept “path” it is possible to give alternative definitions to 

already introduced concepts of recognized chain and language. 
Definitions V.2.1.8: 

1 

0 

qs ы q1 qf 
0 

0,1 

0,1 

Figure V.2.1.6. Diagram FА M6. 
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1. Chain τT* is recognized FA M, if it is the mark of a successful 
path.  

2. FА M recognizes a language L(M), if it consists only of marks of all 
successful paths.    

Note V.2.1.6. If I⋂F≠Ø, then the language recognized by FA M = <Q, 
Т,⊢,⊣,I, F,Δ> contains an empty chain ε.  

Examples V.2.1.8. If FA M7= <Q, Т,⊢,⊣,I, F,Δ> is given as Q = {q1,q2}, 
Т = {a,b},  I = {q1}, F = {q1,q2}, Δ = {<q1,a,q2>, <q2,b,q1>},  then it is 
determined and recognizes the following language: 

L(M7) = {(ab)n:  n≥0} ∪ {(ab)na:  n≥0}. 
The diagram of this automaton is shown in the figure V.2.1.7. 

 
 
 
 
 

 
Definition V.2.1.9. DFA M = <Q, Т,⊢,⊣,I, F,Δ>, is called full, if for any 

state q∈Q and for any symbol t∈T there exists such state p∈Q that <q, t, p>∈Δ, 
i.e. (q, t) = р. 

Examples V.2.1.9. The diagram of full automaton M8 with the following 
parameters Δ = {<1,a,2>, <1,b,3>, <2,a,3>, <2,b,1>, <3,a,3>, <3,b,3>}, Q = 
{1,2,3},T = {a,b}, qs = {1}, F ={1,2} is shown in the figure V.2.1.8. 
 
 
 
 
 
 
 
 
 

Tasks V.2.1. 
1. Find a FA recognizing language {αβ:  α∈{a,b}*, β∈{a,b}*}. 

q2 

a 

q1 

Figure V.2.1.7. Diagram FА M7. 

b 

Figure V.2.1.8. Diagram FА M8 

3 2 

a 

1 

b 

a 

b 

b 

a 
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2. Find a FA recognizing language {a,b}* \ ({an:  n≥0}∪{ bn:  n≥0}). 
3. Find a FA recognizing language {aξb: ξ∈{a,b}*∪{bξa:  ξ∈{a,b}*}. 
4. Find a FA recognizing language {τ∈{a,b}*:  |τ|a ≥3}. 
5. Find a FA recognizing language {ambnambn: m,n1}. 
6. List all configurations (q, τ), satisfying the condition (1, abaacdcc) ╞* 

(q, τ), in FA M9  shown in the figure V.2.1.9.  
 
 
 
 
 
 
 

7. Find the step of the automaton if it is determined as  
М = <{ q0, q1, q2, qf}, {a, b, c}, , q0, {qf}>,  

where (q0,a)={ q1,q2}, ( q1,a)={q1}, (q1,b)={qf}, (q2,c)={qf}, 
L(М) = {ac}∪{anb: n1}. 
8. Find the full determined finite automaton for 

language (a∨b)*(aab∨abaa∨abb)(a∨b)*. 
9. Find the full determined finite automaton for 

language (b∨c)((ab)*c∨(ba)*)*. 
10. Find the full determined finite automaton for 

language (b∨c)*((a∨b)*c(b∨a)*)*. 
 
Questions 8: 
1. Is FA M10   shown in the figure рисунке V.2.1.10. determined?  

 
 
 
 
 
 
 
 

Figure V.2.1.9. Diagram FА M9. 

1ы 
3 

a 

c a 
2 

b 

c 

d 

Figure V.2.1.10. Diagram FА M10. 

1ы 4 

b 

a 

a 

2 

b 

a 

3 

b 

b 

a 
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2. Do FA states q1, q2 and chains α,β,δ exist such that the relations (q1, 

αβ)╞* (q2, β)  и  ¬ (q1, αδ)╞* (q2, δ) hold true?  
3. How are |Q|, |T|, |Δ|,|τ| and the number of configurations attainable from 

(q,τ) related in the sense of ╞*?  
4. What automaton can recognize the language generated by the regular 

expression (abab)∨(aba)*? 
5. What contains the input tape? 
6. What determines the direction of the shift of the head unit? 
7. What does the automaton configuration consist of? 
8. What types of configurations exist? 
9. What does an automaton – recognized language consist of? 
10. Is the determined finite automaton M11 with alphabet Т = {a, b, c} 

shown in the figure V.2.1.11 full?  
 

 
 
 
 
 
 
 
 

11. Is the determined finite automaton M12  with alphabet  Т = {a, b} 
shown in the figure V.2.1.12. full? 
 

 

 

 

Figure V.2.1.11. Diagram FА M11. 

3 

a 

с с 
2 

b 

3 

a a 

b b 

с 

Figure V.2.1.12. Diagram FА M12 

3 2 

a 

1 

b 

a 

b 

b 

a 
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12. What does the graph of transition of finite automaton satisfying a given 

grammar look like? 
   







ABBCC
AABB

AAP
CPCBAG

||*|*|*
|||

|:
.,,,,,*,,

 

 
Tests V.2.1. 
1. Finite automatons move to a distinct state in accordance with: 
A) transition table in the automaton’s memory; 
B) given task; 
C) figures; 
D) directions; 
E) contents. 
 
2. Which automaton is called determined? 
A) if for any acceptable configuration of the identifier arising at one of the 

steps of its operation there exist two configurations in one of which the 
identifier will move in the following step; 

B) if for any acceptable configuration of the identifier arising at one of the 
steps of its operation there exists a uniquely possible configuration in which the 
identifier will move in the following step; 

C) if the identifier has an acceptable configuration for which there exists a 
finite set of configurations possible at the next step of operation; 

D) if the identifier allows reading input symbols in one direction only 
(“from the left to the right”); 

E) if the identifier allows that the reading device move in both directions 
with respect to the chain of input symbols – both forwards from the beginning 
of the tape to its end and backwards going back to previously read symbols.   
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3.Finite automaton is a five – element set  M= <Q, T, δ, q0, F>,  
where Q is: 

A) a finite set of acceptable input symbols; 
B) a finite set of states; 
C) transition function; 
D) initial state; 
E) final state. 
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