
1

2

3

UDC 004.4(075.8)

LBC: 32.973.26-018.1я73

SH-25

Reviewers:

Kaziev Galym Zulkhurnaevich – D.T.S., Professor, Director of the National Informations

Technologies JSC.

Atanov Sabyrzhan Kubeisinovich – D.T.S., Professor of the Chair of Computer Science and

Software of the Lev Gumilyov Eurasian National University.

Uskenbayeva Raisa Kabievna – D.T.S., Professor, Prorector of the International Informations

Technologies Unversity.

Autors:

SH-25 Sharipbay A.A. – D.T.S., Professor, Laureate of State prize of the Reppublic of

Kazakhstan, Director of the SRI Artificial Intelligence, Professor of the Chair of Computer Sciense

and Information Security of the Lev Gumilyov Eurasian National University.

SH-25 Sharipbay A.A. Mathemetics for Computer Sciense – Training manual, Astana, 2017,

-126 pages.

ISBN 978-601-326-012-9

The content of the training manual "Mathematics for Computer Science" is compiled in

accordance with the Syllabus of the compulsory discipline of the same name for the professional

master's educational program "Computer Science as a Second Competence" in the specialty

6M060200-Informatics.

The manual is intended for studying the mathematical foundations of the science of computer

science by undergraduates of the oriented educational program.

The manual can also be used by students, undergraduates and doctoral students of other

specialties, as well as all those who independently wish to study the mathematical basis of computer

science.

The training manual was published with funds from the International Project TEMPUS-

544319-TEMPUS-1-2013-1-FR-TEMPUS-JPCR-(2013-4530001/00) “Professional Master’s

Degree in Computer Science as a second Competence in Central Asia”.

UDC 004.4(075.8)

LBC: 32.973.26-018.1я73

ISBN 978-601-326-012-9 ©Sharipbay A.A. 2017

4

Content

1. SETS 5

2. NOTATIONS AND CODING OF INFORMATION 19

4. LAWS OF LOGIC 34

5. GRAPHS 41

6. FORMAL GRAMMARS 50

6.1. General information 50

6.2. Regular grammars 59

6.3. Context-free grammars 64

7. FINITE AUTOMATONS 72

3. BASES OF MATHEMATICAL LOGIC 92

4. LAWS OF LOGIC 96

11. GRAPHS. 103

7. FINITE AUTOMATONS 112

LITERATURE 126

5

1. SETS

The purpose of the lecture is to give the concept of set and their properties,

subset. Finite and infinite sets. Euler-Wenn diagram. Set-theoretical operations.

Union. Intersection. Subtraction. Equivalence. Number sets. Sets of natural,

integer, real numbers. Set of interval numbers

Sets are one of the most fundamental concepts in mathematics. Developed

at the end of the 19th century. The set theory is now a ubiquitous part of

mathematics, and can be used as a foundation from which nearly all of

mathematics can be derived.

Definition 1.1. A set is a collection of distinct objects, considered as

an object in its own right.

The objects can be real, physical things, or abstract, mathematical things,

and are called elements of the set.

The elements of the set will be shown in curly brackets {and} and do not

repeat.

For example: the numbers 1, 2, and 3 are distinct objects when considered

separately, but when they are considered collectively they form a single set of

size three, written {1,2,3}.

The names of the sets are denoted by capital Latin letters and their elements

- by small Latin letters or Arabic numerals. In both cases it is possible to use

indexes.

Record a∈A (a∉A) means that the element belongs to a (not belongs) set A.

A set is defined in two ways: by listing all the elements or describing of the

properties of elements.

Sets may be described in many ways: by roster, by set-builder notation, by

interval notation, by graphing on a number line, and/or by Wenn diagrams

For example:

1) the set of small Latin letters, which denote the vowel sounds English

is Vs= {a, e, i, o, u};

2) The set of natural numbers less than the number 100

N100 = {n| n∈N и n≤100}.

Definition 1.2. The number of elements of A is denoted by | A | is called the

cardinality of the set A.

Among all sets there are two special sets:

http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Mathematical_object

6

1. Ø - the empty set that does not contain a single element.

2. U - universal set (universe), containing all the elements of this type.

Regarding the theory of the universe is the set containing all elements as

objects considered in this theory.

For example, the universe is:

1) in number theory - the set of all integers;

2) in the theory of language - the set of all words in a given alphabet;

3) in geometry - the set of all points of n-dimensional geometric space.

Definition 1.3. If the number of elements is finite (non-negative integer k

exists, equal to the number of elements of the set), then it is called a finite set,

otherwise it is called an infinite set.

In particular, the empty set is a finite set, the number of items is equal to

zero, i.e | Ø | = 0.

In the future, we will consider only finite sets.

If finite sets are disjoint (Xi∩Xj = Ø), then

 .

If is the final set, then

.

Definitions 1.4. Let we are given two sets A and B, then over them can be

determined next operations:

(1) Union consists of elements A or B, written as

A∪B = {x: x∈A ∨ x ∈ B}.

(2) Crossing consists of elements A and B, written as

A∩B = {x: x∈A & x∈ B}.

(3) Supplement consists of the elements of the universe U, and does not

include the elements of A, written as

}.&|{ AxUxxA =

(4) Difference consists of the elements of A and not an element of B, written

as

A \ B = {x: x∈A & x∉B}.

(5) Symmetric difference consists only of elements A or only elements of B,

written as

A △ B = {x| (x∈A & x∉B) ∨ (x∈B & x∉A)}

7

(6) Direct product consists of all ordered pairs of elements A and B, written

as

A × B = {(a, b)| a∈A & b∈B}

Operation (1) - (3) may be represented by Euler-Wenn diagram (Fig. I.1),

wherein a universe U depicted rectangle, and a plurality of A and B, a

circumference. To highlight the result of shading applied.

This shows that the sets A and B are subsets of U, and they are written as A

⊆ U and B ⊆ U (see. I.2.2.).

Operations (1) - (3) can be determined not only on the two sets, but over n

sets A1, A2, ..., An, where n∈N & n>2.

Fig. 1. Euler- Wenn diargam.

Examples 1.1. Let A = {a, b, c, d, e, f}, B = {c, d}, then:

1. A ∪ B = {a, b, c, d, e, f};

2. A ∩ B = {c, d};

3. B × B = {(c, с), (c, d), (d, c), (d, d)};

4. A \ B = {a, b, e, f};

5. A△B = {a, b, f}.

6. A depends on what is the universe U. For example, if U = {a, b, c, d, e,

f, h}, then A ={h}.

8

Now you can show the way of the task table sets and operations on them.

Suppose that U, A ⊆ U and x∈U.

Definition I.5. Indicator (Characteristic function) for set A is called IA(x)

and defined as:








=

Axif

Axif
xI A

,0

,1
)(

Thus: }.1,0{: →UI A

For A ⊆ U and B ⊆ U has the following properties:

;)()(BAxIxI BA ==

;)()(BAxIxI BA 

);(1)(xIxI AA −=

);()()()()(xIxIxIxIxI BABABA −+=

);()()(xIxIxI BABA =

);()()()(\ xIxIxIxI A BABA −=

);()()()(\ xIxIxIxI A BABA −=

).()(2)()()(xIxIxIxIxI BABABA −+=

Indicators conveniently given by a table 1.1.

Table 1.1. Indicators.

Ax Bx BAx  BAx  BAx \ Ax BAx 

0 0 0 0 0 1 0

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 1 0 0 0

Set Operations have the following properties:

I. The union, intersection and difference:

1) A∪Ø = A - property of zero;

2) A∪A = A - idempotence;

3) A∪B = B, if all elements of A is contains in B;

4) A∪B = B∪A - commutes;

9

5) (A∪B) ∪C = A∪ (B∪C) = A∪B∪C - associativity;

6) A∩Ø = A - property of zero;

7) A∩A = A - idempotence;

8) A∩B = A, if all elements of A is contains in B;

9) A∩B = B∩A- commutes;

10) (A∩B) ∩C = A∩ (B∩C) = A∩B∩C - associativity;

11) A∪ (B∩C) = (A∪B) ∩ (A∪C) - distributivity;

12) A∩ (B∪C) = (A∩B) ∪ (A∩C) - distributivity;

13) A∩ (B \ C) = (A∩B) \ (A∩C) - distributivity;

14) A∪ = U - property of the additions;

15) A∩ = Ø - property of the additions;

16) - the law of de Morgan;

17) - the law of de Morgan;

18) - involutivity;

19) A \ Ø = A - property of the difference;

20) A \ A = Ø - property of the difference;

21) A \ B = A∩ = Ø - property of the difference;

22) B \ A = B∩ = B \ (B∩A) - property of the difference;

II. Symmetric difference and direct product:

1) A △ Ø = A - property of zero;

2) A △ A = Ø - idempotence;

3) A △ B = (A∪B) \ (A∩B) - property symmetric difference;

4) A △ B = B △ A - commutes;

5) (A △ B) △ C = A △ (B △ C) = A △ B △ C - associativity;

6) (A∪B) × C = (A × C) ∪ (B × C) - distributivity;

7) A × (B∪C) = (A × B) ∪ (A × C) - distributivity;

8) (A∩B) × C = (A × C) ∩ (B × C) - distributivity;

9) A × (B∩C) = (A × B) ∩ (A × C) - distributivity;

10) (A \ B) × C = (A × C) \ (B × C) - distributivity;

11) A × (B \ C) = (A × B) \ (A × C) - distributivity.

10

Definitions 1.5. Suppose we have two sets A and B of the same type. Then

we can enter the following relationship:

1) A = B: A is equal to B, if A and B are composed of the same elements, i.e.

A and B are subsets of each other;

2) A⊆B: A is contained in B, if all elements of A belong to the B or A is equal

to B, it means that A is a subset of B;

3) A⊂B: A strictly contained in B, if all elements of A belong to B and A is

not equal to B, i.e. some elements of B do not belong A, it means that A is a

proper subset of B.

Similarly, you can determine the relationship includes A⊇B strictly includes

A⊃B.

It is easy to notice that the above relationships entered =, ⊆ and ⊂ are subsets

of the direct product A × B.

Thus, we can assume that any relationship - is a subset of the direct product

generated by the law.

Note 1.1. The empty set Ø is a proper subset of any finite set.

Examples 1.2.

1) If A = {a, b, c}, B = {b, a, c}, then A = B;

2) if A = {1,2,3,4}, B = {3,1,4,2}, then A ⊆ B;

3) if A = {1,2,3}, B = {3,1,4,2}, then A ⊂ B

For the convenience of working with numbers they are logically divided into

sets and identified:

1. Real numbers. The set of real numbers is represented by the letter R.

Every number (except complex numbers) is contained in the set of real numbers.

When the general term "number" is used, it refers to a real number. All of the

following types or numbers, may also be considered as real numbers.

2. Integer numbers.The set of integers is represented by the letter Z. An

integer is any number in the infinite set,

Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}.

Integers are sometimes split into 3 subsets, Z+, Z- and 0. Z+ is the set of all

positive integers {1, 2, 3, ...}, while Z- is the set of all negative integers {..., -3,

-2, -1}. Zero is not included in either of these sets. Znonneg is the set of all positive

integers including 0, while Znonpos is the set of all negative integers including 0.

11

3. Natural numbers. The set of natural numbers is represented by the

letter N. This set is equivalent to the previously defined set, Z+. So a natural

number is a positive integer.

N = { 1, 2, 3, 4, ... }

4. Whole Numbers. The set of whole numbers is represented by the letter

W. This set is equvalent to the previously defined set, Znonneg. So a whole number

is a member of the set of positive integers (or natural numbers) or zero.

W = { 0, 1, 2, 3, 4, ... }.

5. Prime numbers. The set of prime numbers is represented by the letter

P. A prime number is an integer that is divisible only by itself and one. Examples

of prime numbers are 3, 5, 7, 11, 13, 17, 19.

6. Rational Numbers.The set of rational numbers is represented by the

letter Q. A rational number is any number that can be written as a ratio of two

integers. The set of rational numbers contains the set of integers since any integer

can be written as a fraction with a denominator of 1. A rational number can have

several different fractional representations. For example, 1/2 is equivalent to 2/4

or 132/264. In decimal representation, rational numbers take the form of finite

or infinite periodic fractions. Some examples of rational numbers are:

Irrational Numbers. The set of irrational numbers is represented by the letter

I. Any real number that is not rational is irrational. These are numbers that can

be written as decimals, but not as fractions. They are infinite non-periodic

decimal fractions. Some examples of irrational numbers are:

Note. Any root that is not a perfect root is an irrational number. So any roots

such as the following examples, are irrational.

Note 1.1. Between the sets of numbers have the following relationship: P ⊆

N ⊆ W ⊆ Z ⊆ Q ⊆ R.

The Real Number Line

12

Every real number can be associated with a single point on the real number

line

Intervals.

An interval is a set that consists of all real numbers between a given pair of

numbers. It can also be thought of as a segment of the real number line. An

endpoint of an interval is either of the two points that mark the end of the line

segment. An interval can include either endpoint, both endpoints or neither

endpoint. To distinguish between these different intervals, we use interval

notation.

An open interval does not include endpoints. The exclusion of the endpoints

is indicated by round brackets () in interval notation. When the interval is

represented by a segment of the real number line, the exclusion of an endpoint

is illustrated by an open dot. For example, the interval of numbers between the

integers 3 and 8, excluding 3 and 8, is written as (3, 8) = {x: 3 < x < 8 }

in interval notation. As a segment of the real number line, it would be

represented by the line below.

 A closed interval includes the endpoints. The inclusion of the endpoints is

indicated by square brackets [] in interval notation. When the interval is

represented by a segment of the real number line, the inclusion of an endpoint is

illustrated by a closed dot. For example, the interval of numbers between the

integers 1 and 11, including both 1 and 11, is written as [1, 11] = {x: 1 ≤ x ≤ 11}

in interval notation. As a segment of the real number line, it would be represented

by the line below.

 One endpoint of an interval can be included, while the other is excluded.

The interval [a, b) represents all numbers between a and b, including a but not

b. Similarly, the interval (a, b] would represent all of the numbers between a and

b, including b but not a. These intervals are shown in more detail in the table

below.

13

Infinite intervals are those that do not have an endpoint in either the positive

or negative direction, or both. The interval extends forever in that direction.

Infinite intervals are summarized in the table below.

In mathematics, an (real) interval is a set of real numbers with the property

that any number that lies between two numbers in the set is also included in the

set. For example, the set of all numbers x satisfying 0≤ x≤ 1 is an interval which

contains 0 and 1, as well as all numbers between them. Other examples of

intervals are the set of all real numbers R, the set of all negative real numbers,

and the empty set.

Notation for intervals

The interval of numbers between a and b, including a and b, is often

denoted [a, b].

To indicate that one of the endpoints is to be excluded from the set, the

corresponding square bracket can be either replaced with a parenthesis, or

reversed:

},:{[,]),(bxaRxbaba ==

},:{[,[),[bxaRxbaba ==

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Empty_set

14

},:{],]],(bxaRxbaba == }.:{],[],[bxaRxbaba ==

Note that (a, a), [a, a) and (a, a] each represents the empty set,

whereas [a, a] denotes the set {a}. When a > b, all four notations are usually

taken to represent the empty set.

Infinite endpoints.

In both styles of notation, one may use an infinite endpoint to indicate that

there is no bound in that direction. Specifically, one may use a =−∞ or b = +∞

(or both). For example, (0, +∞) is the set of all positive real numbers,

and (−∞, +∞) is the set of real numbers.

The extended real number line includes −∞ and +∞ as elements. The

notations [−∞, b], [−∞, b) , [a, +∞] , and (a, +∞] may be used in this context. For

example (−∞, +∞] means the extended real numbers excluding only −∞.

Integer intervals.

The notation [a .. b] when a and b are integers, or {a .. b}, or just a .. b is

sometimes used to indicate the interval of all integers between a and b, including

both. This notation is used in some programming languages.

An integer interval that has a finite lower or upper endpoint always includes

that endpoint. Therefore, the exclusion of endpoints can be explicitly denoted by

writing a .. b − 1 , a + 1 .. b , or a + 1 .. b − 1. Alternate-bracket notations

like [a .. b) or [a .. b[are rarely used for integer intervals.

An open interval does not include its endpoints, and is indicated with

parentheses. For example (0,1) means greater than 0 and less than 1. A closed

interval includes its endpoints, and is denoted with square brackets. For

example [0,1] means greater than or equal to 0 and less than or equal to 1.

Classification of intervals

The intervals of real numbers can be classified into eleven different types,

listed below; where a and b are real numbers, :

empty: ,

degenerate: ,

proper and bounded:

open: ,

closed: ,

http://en.wikipedia.org/wiki/Empty_set
http://en.wikipedia.org/wiki/Infinity_(mathematics)
http://en.wikipedia.org/wiki/Extended_real_number_line
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Programming_language

15

left-closed, right-open: ,

left-open, right-closed: ,

left-bounded and right-unbounded:

left-open: ,

left-closed: ,

left-unbounded and right-bounded:

right-open: ,

right-closed: ,

unbounded at both ends: }.),(R=+−

Intervals of the extended real line.

In some contexts, an interval may be defined as a subset of the extended real

numbers, the set of all real numbers augmented with −∞ and +∞.

In this interpretation, the notations [−∞, b] , [−∞, b) , [a, +∞] ,

and (a, +∞] are all meaningful and distinct. In particular, (−∞, +∞) denotes the

set of all ordinary real numbers, while [−∞, +∞] denotes the extended reals.

This choice affects some of the above definitions and terminology. For

instance, the interval (−∞, +∞) = R is closed in the realm of ordinary reals, but

not in the realm of the extended reals.

Properties of intervals

The intersection of any collection of intervals is always an interval. The

union of two intervals is an interval if and only if they have a non-empty

intersection or an open end-point of one interval is a closed end-point of the other

]).,(],[),((cacbba =

Examples 1.1.

1. Let A = {1, 2}, B = {a, b}, C = {+, -}. Then distributivity (A∪B) ∪C = A∪

(B∪C) = A∪B∪C defined as ({1,2} ∪ {a, b}) ∪ {+, -} = {1,2} ∪ ({a, b}) ∪ {+,

-}) = {1,2} ∪ {a, b} ∪ {+, -}.

2. By roster: A roster is a list of the elements in a set, separated by commas

and surrounded by curly braces:

1) {2,3,4,5,6} is a roster for the set of integers from 2 to 6, inclusive; 2)

{1,2,3,4,…} is a roster for the set of positive integers. The three dots indicate

that the numbers continue in the same pattern indefinitely.

http://en.wikipedia.org/wiki/Extended_real_number_line
http://en.wikipedia.org/wiki/Extended_real_number_line

16

By set-builder notation: Set-builder notation is a mathematical shorthand

for precisely stating all numbers of a specific set that possess a specific property.

}62:{  xZx is set-builder notation for the set of integers from 2 to 6,

inclusive, where = "is an element of" Z -the set of integers numbers.

The statement is read, "all x that are elements of the set of integers, such that, x is

between 2 and 6 inclusive."

}0|{  xZx . The statement is read, "all x that are elements of the set of

integers, such that, the x values are greater than 0, positive." (The positive

integers can also be indicated as the set Z+). It is also possible to use a colon (:

), instead of the | , to represent the words "such that". }62|{  xZx is the

same as }0|{  xZx

By interval notation: An interval is a connected subset of numbers. Interval

notation is an alternative to expressing your answer as an inequality. Unless

specified otherwise, we will be working with real numbers.

Exercises 1.1. Let A = {1, 2, 4}, B = {3, 4, 5, 6}. Run this:

1) A∪Ø;

2) A∪A;

3) A∩B;

4) A × B;

5) A \ B;

6) A∪;

7) A △ B;

8) (A∪B) × C;

9) (A \ B) × C.

Questions 1.1:

1. What is a set?

2. How is sets determined?

3. What is the universal set?

4. How is the subset determined?

5. What is the Euler-Wenn diagram?

6. What is the Euler-Wenn diagram for the association?

7. How is the direct product of the sets determined?

17

8. How is the difference of the sets?

9. How is the symmetric difference of the sets?

10. How is the indicator function of the sets?

11. What is the law of de Morgan?

12. If A = {1,2,3}, B = {3,4}, then, what means {1,2,3,4}?

13. If A = {1,2,4}, B = {4,3,2}, then, what means {2,4}?

14. If A {1,2,3,4}, B={3,4,5,6}, then, what means {2,4}?

15. What is the distributivity?

16. What is the associativity?

17. What is commutativity?

Tests I.1:

1. Determine | L |, if L is consist up of the Latin lowercase letters: L={a, b,

c, d, e, f, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z},

A) 1

B) 26

C) 28

D) 0

E) 30

2. If D = {d | d - an integer and 0 is performed ≤d ≤ 9}, i.e., D =

{0,1,2,3,4,5,6,7,8,9} then what is the | L |?

A) d

B) 9

C) 10

D) 0

E) 1

3. What is the ratio of accessories?

A) ∩

B)

C)

D) Ø

E) &

І.3.3 tests.

4. What result is obtained after performing A∩V for given sets A = {0, 2, 4,

6} and B = {- 2, -1, 0, 1, 2}

18

A) {0, 2}

B) {0, 2, 4, 6}

C) {-2, -1, 0, 1, 2}

D) {0, 2, 4, 6, -2, -1, 0, 1, 2}

E) Ø

5. What happens after the result of the operation A∪V for given sets A = {1,

3, 5} and B = {2, 4, 6, 8}

A) {1, 2, 3, 4, 5, 6, 8}

B) {1, 3, 5}

C) {2, 4, 6, 8}

D) Ø

E) {1, 3, 8}

6. What will the result after performing A \ B for given sets A = {a, b, c, d,

e, f, g} and B = {d, e, f}

A) {a, b, c, d}

B) {a, b, c, d, e, f}

C) {d, e, f}

D) {d, e}

E) Ø

19

2. NOTATIONS AND CODING OF INFORMATION

The purpose of the lecture is to give the rules of notation (designation) and

coding of information for computer storage and processing.

Outline of the lecture is to explore methods and reporting systems of

variables using numbers, letters and other symbols.

It is known that information can be considered a reflection of the properties

and relations of tangible and intangible objects and subjects of the world.

Information can be designated and understood, i.e every piece of information

must have its form and its content.

Typically, for designation (notation) of data certain characters and their

sequences are used. Herewith, a man distinguishes characters by their mark, and

the computer - by their codes, consisting of a sequence of 0 and 1 as the physical

storage devices in computer (memory cells and registers) can be only in two

states, which correspond to 0 or 1. Using a number of similar physical devices,

you can store in memory of computer any information using binary code as a

sequence of 0 and 1. Therefore, any notation (numeric, text, graphics, sound,

etc.) of information, which operates modern computers, is encoded (converted)

in binary code and is decoded (converted back) in notation for ease of

individual’s perception. Binary code of information is stored in RAM and

occupies one byte, when a character outputs to a printer or to computer screen

decoding occurs, i.e. converting the character code in its image.

Traditionally for one character encoding the amount of information equal to

1 byte, i.e. I = 1 byte = 8 bits is used. If we consider the characters as possible

events, we can calculate how many different characters can be encoded in a

single byte:

N = 2I = 28 = 256 bits.

Thus, each character is assigned to a unique decimal code between 0 and

255, or the corresponding binary code from 00000000 to 11111111.

While entering symbolic information to the computer, its binary encoding

happens, code of the character is stored in RAM and occupies one byte, when a

character outputs to a printer or to computer screen decoding occurs, i.e.

converting the character code in its image. In general terms, encoding of

information can be defined as transfer of information provided by message in

primary alphabet to a sequence of codes. It should be understood that any data -

20

it is somehow encoded information. Information may be presented in different

forms: in the form of numbers, text, graphics, sound and etc. Conversion from

one form into another is coding. It should be understood that any data it is

somehow encoded information. Information can be presented in different forms:

as numbers, text, drawing, etc. Transfer from one form to another is encoding.

If the value is determined at the time of construction of the general rules of

interpretation of the language of communication, this value will be constant, or

alternatively – variable.

Definition 2.1. Notation is:

1) а system of figures or symbols used in a specialized field to represent

numbers, quantities, tones or values;

2) the act or process of using such a system.

In computer science the treatment of numerical values may require a

different systems of numbers calculation. The bases of these systems can be

2,3,4,

Definition 2.2. Number system is a way of writing numbers with numbers

and sets of rules. There are several ways of recording numbers using digits.

Any number system satisfies the following rules:

− the possibility of recording the numbers in a given range;

− each sequence of digits defines only a single numeric value;

− perform simple operations.

All number system are divided into: positional number systems and

nonpositional number systems.

1. In positional number system the values of digits depend on their position

in the record number. If same digit in the record of number occurs more than

once, then it determines a different value. For example, in the three-digit number

333 a left-most digit 3 identifies three hundreds, the average digit 3 - three tens,

and the rightmost digit 3 - three units.

2. In nonpositional number system the values of digits do not depend on

their place in the record of numbers. For example, the record of number by

Roman digits: in record of number LXXXVIII - eighty-eight the digit L is fifty,

X - ten, V - five, І - one.

21

The positional number system is characterized by its base. The base defines

the number of digits used in the system. For example, the number of digits in

decimal system is equal to ten, in octal system – eight, in binary system - two

etc.

At any positional number system with the base q the predetermined number

A can be represented as follows:
m

m

n

nq qaqaqaqaqaA −

−

−

−

−

− ++++++=  1

1

0

0

1

1

1

1)((1)

where
ia - number of digits used in the number system, n - number of places

in the integer part, m - number of places in the fractional part (i=n–1,..., 1, 0, –

1,....,–m).

Among them, we are interested in the decimal number system and binary

number system.

Table 2.1 equivalent decimal and binary digits are given.

Table 2.1. Equivalent decimal and binary digits

Decimal digit Binary digit

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

From this table you can see that the recording of the same numerical value

in different number systems require a different number of digits. For example,

the decimal number16 in binary notation will be 10000. To transfer a given

integer number from number system with the base p to the number system with

the base q this number should be repeatedly divided to q, while the remainder

will not be less than q.

22

To take the resulting quotient as the most significant place of the number

with a base of q, and to take residues as values of remaining places in a direction

starting from the last residue to the first residue and form a chain from left to the

right. For example, transferring the number 25 in the decimal system to the

binary system will be as follows:

Namely, 25(10) = 11001(2). To verify the number 11001 we decompose

according to the equation (1) as follows:

)10(

01234

)2(251008162*12*02*02*12*111001 =++++=++++= .

In order to transfer of stated right fractional number with the base p to the

base q on the basis of we need to multiply this number by q several times, while

the value of the digit of the fractional part is not equal to zero, or until the

specified accuracy. As the value of place of a right fraction with a new base q

we need to form a chain from left to right in the direction from the first appeared

integer part until last appeared integer part.

Performing operations and their properties in the decimal system and the

binary system are similar. The properties of these operations are identical to the

properties of operations on decimal numbers.

Example 2.1:

1. A four-digit number 1952 of the decimal system is expressed as follows:

0123

)10(10*210*510*910*11952 +++= .

2.The number of the decimal system with three-digit integer part and three-

digit fractional part 596.174(10) is expressed as follows:

 25 2

-24 12

 1 12

 0

 2

 6

 6

 0

 2

 3

 2

 1

 2

 1

23

321012

)10(10*410*710*110*610*910*5174.596 −−− +++++= .

3.The number of binary system with four-digit integer part and a three-digit

fractional part 1010.101(2) is expressed as follows:
3210123

)2(2*12*02*12*02*12*02*1101.1010 −−− ++++++= .

1. The transfer of a fractional number 0.625 in decimal number system

to binary system will look like this:

0

,

625

* 2

1

,

250

 *

2

0

,

500

 *

2

1

,

000

* 2

0

,

000

So the result is:)2()10(1010.0625.0 = .

Opportunities of all positional number systems are the same. The difference

between them is only in the methods of designation of number values, but types

of operations on numbers and their properties are the same.

However, among them, the decimal number system is the most common.

Therefore, we first look familiar to us decimal system of numbers, operations on

them, and the properties of these operations, because they are suitable for other

systems of notation of numbers.

Integer numbers will be presented by Arabic numerals, in front of their

negative values "-" sign will be written, and at front of their positive values "+"

sign can be written.

Real numbers depending on their the method of representation are divided

into two groups: real numbers with fixed-point and floating-point.

Representation of real numbers with the fixed point consists of integer and

24

fractional parts. The integer part is placed on the left of the fractional part, and

they are separated by point ".".

To indicate positive or negative values "+" or "-" in front of them recorded.

Both parts are represented by Arabic numerals.

Presentation of real numbers with floating-point consists of parts called the

mantissa, the basis of the number system and order.

If we denote the mantissa by M, the order by p, the basis of the number

system by q, the real numbers are as follows:
pqM * .

To understand, examples of real numbers with floating point in the table

2 are reviewed.

Table 2. Examples of real numbers with floating point.

№ Example Mantissa Order Value

1. 310*.12− –12 3 –12000

2. 210*3.0 +
 0.3 2 30

3. 210*254 −
 254 –2 2.54

4. 110*5.1 1.5 1 15

5. 210*17.2+ 2.17 +2 217

One and the same real number with floating point can be represented in

different ways. For example, the same number of 3.14 may be recorded:

===== −− 21012 10*.0314.010*314.010*14.310*4.3110*.314

To have a single entry for the submission of real number with floating-

point we need to normalize it to the following condition:

11 − Mq ,

where │M│- the absolute value.

For example, real numberw with floating point in a normalized form are as

follows:
410*1364.0 and

710*617.0 −
.

In order to simplify the arithmetic operations in the computer special codes

to represent numbers are used. We consider direct code, inverse code and

additional code of numbers.

25

Direct code of binary number is itself a binary number, and a sign of the

binary number is written by dinary digit: "-" sign - the number 1, "+" sign - digit

0. For example, a negative binary number 10112 in direct code is written as

1.1011.

Representation of numbers in a computer, compared with forms well known

since high school, has two important differences:

- numbers are recorded in the binary number system;

- for recording and processing of numbers a finite number of places are assigned

(in the ordinary - non-computer arithmetic has no limit).

Addition and multiplication of binary numbers is done according to the table

of addition and multiplication:

Addition of binary numbers Multification of binary numbers

0 + 0= 0

0 +1 = 1

1 + 0 = 1

1 + 1 = 10

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

Arithmetic device in computer performs an action not with the binary

numbers according to the rules of binary arithmetic, but with their binary codes

according to the rules of arithmetic binary codes.

Differences between the rules of arithmetic of binary codes from ordinary

arithmetic is in limit of discharge grid. In other words, for the record of number

in the computer memory a fixed number of places is allocated. Computer

memory has byte structure, however, the size of one addressed cell is typically

several bytes: 2, 4, 8 bytes.

All the information on the computer is represented in binary code. From the

whole set of codes, we consider the direct, inverse and additional codes.

To record integer binary number in the direct code binary numbers are

complemented by sign pool, which is assumed to be equal to "0" for positive

numbers and "1" - for negative. In manual recording of numbers with sign, the

sign pool, for convenience, is separated from significant pools by point.

For example, the decimal number (+12) in direct binary code is written as

(0.1100), and a decimal number - so (-12) - (1.1100).

26

Direct code is used for storage of numbers in the computer memory, as well

as for operations of multiplication and division.

Other forms of presenting numbers with sign are the inverse and additional

codes. These codes allow you to replace the subtraction of integers with their

addition, based on the principle: a - b = a + (-b).

Positive numbers recorded in direct, reverse and additional codes are the

same.

Thus, positive decimal number 12 in direct, inverse and additional binary

codes can be written as follows: (0.1100).

To convert a negative number from direct code into reverse, one shoud be

saved in sign pool and numbers of significant pools should be reversed, i. e. "1"

is replaced by "0" and "0" to "1".

Additional code of negative number is obtained from the inverse code of

number by adding "1" to the least significant digit of this number.

Rules of adding in additional code:

1. Addition is made accroding to the rules of addition of binary

numbers, including the sign pool.

2. If as a result of adding the transfer occurs (overflow) from sign pool,

the transfer is ignored (discarded).

3. If the sign of addition does not coincide with the signs of additives (this

situation can arise only when the signs are the same), there is an overflow

of digit grid of computer and the result should be declared invalid.

Addition in reverse binary code differs from adding in additional code on

only one rule: if as the result of the addition there was the transfer from sign

pool, i.e., overflow has occurred, it is necessary to add "1" to the least significant

digit.

Example 2.1.

1. +5 - positive integer 5

2. 3.14 - positive real number with fixed-point, the integer part 3, and the

fractional part 14.

3. 0.2 - positive real number with fixed-point, the integer part 0 and

fractional part 2.

4. -1.001 - negative real number with fixed-point, the integer part 1 and the

fractional part of 001.

27

5. 0.0 - positive real number, the integer part 0 and the fractional part 0.

Example 2.2. Write a decimal number (-12) in direct, inverse, and the

additional binary codes in six-digit cell:

1.01100 - direct code;

1.10011 - reverse code;

1.10100 - additional code.

In this example, one place is assigned to the sign of number, five places to

the number itself, to the point in the discharge grid no place stands out. The

number itself is shifted to the right edge, and the excess discharge (in direct code)

recorded as "0". Then direct code is inverted to transfer to reverse.

Transfer of numbers from reverse (additional) code into direct code

performed on the same rules as to reverse (additional) code from direct.

Example 2.3. To perform this operation: 15 - 7 in direct, reverse, and

additional code:

 Decimal

number

Direct

code

Reverse

code

Additional

code

Data 15

–

7

0.1111

 –

1.0111

0.1111

 +

1.1000

0.1111

 +

1.1001

Intermediate result 8 10.0111

+

 1

1 0.1000

Final result

8 0.1000 0.1000

Example 2.4. To perform this operation: 7 – 15 in direct, reverse, and

additional code:

 Decimal

number

Direct

code

Reverse

code

Additional

code

28

Data –15

+7

0.1111

1.0111

1.0000

+

0.0111

1.0001

+

0.0111

Intermediate

result

–8 1.0111

1.1000

Final result

–8 1.1000 1.0111

+

 1

1.1000

Exercise 2.

1. Determine the real numbers with floating point:

1) 40,23;

2) –5;

3) 3.3*10–2;

4) 5.1+6i;

5) 0.14+7i.

2. Move a specified number from one number system to another:

1) 10000001 from binary to decimal system.

2) 129 from decimal to octal system.

3) 1952 from decimal to hexadecimal system.

3. Arrange the arithmetic operations so that it is true the following equation

in the binary system: 1100 ? 11 ? 100=100000.

Questions 2.

1. What is a number system?

2. For what groups real numbers are divided?

3. Can the same numeric value be represented in the different number

systems?

4. What are the types of numeric values?

5. For what groups real numbers are divided?

Test 2.

1. In what system data is coded in ANSI?

A) in binary system

B) in ternary system

29

C) in octal system

D) in decimal system

E) in hexadecimal system

2. In what system data is coded in in Unicode?

A) in hexadecimal system

B) in ternary system

C) in octal system

D) in decimal system

E) in binary system

3. How many bytes are used for encoding in Unicode?

A) 2

B) 1

C) 3

D) 5

E) 4

4. What is the number system?

A) A recording method using the numbers and a set of rules.

B) Possibility to record values of the numbers in a given range.

C) Each sequence of numbers identifies only one numerical value.

D) Easiness of performing of operations.

E) Values of numbers do not depend on their position in the record of

number.

5. Which number system is the smallest?

A) binary.

B) octal.

C) hexadecimal.

D) Ternary.

E) Decimal.

30

3. BASES OF MATHEMATICAL LOGIC

Statements and logic connectives. The logic form of the statement: the

subject, a predicate, connectives, premises. Conclusions: deductive, inductive.

Concepts of the proof. Logic connectives: disjunction, conjunction, negation,

implication, equivalence. Truth tables. Logic functions. Concepts of a

tautology and the

Statements

The content of any science make statements (propositions) about the objects

of her subject domain. Propositional logic is abstracted from the specific content

of the statements and studies the structure of complex sentences and their logical

connections.

Statement is the declarative proposition, wich can be true or false. Examples

of statements: "Snow is white", "2> 3", "If there is rain, then I take an umbrella",

etc.

Statements can be linked to each other by means of logical connections,

"not", "and", "or", "implication", "equivalent."

Mathematical logic, we will study with the help of mathematical methods

in a some meta-language, which is different from the subject language of the

studied logic. Subject language of propositional logic consists of the alphabet

and formulas:

Alphabet:

(1) P, Q, R, ... - variables for simple statements (propositional letters);

(2) , &, , →,  - symbols on the statements of operations (logical

ligament);

(3) (,) - auxiliary characters (braces).

The formulas or complex statements:

(1) P, Q, R, ... - propositional letters - elementary formula (atoms);

(2) if A, B - formula, А, А&В, АВ, А→В, А В - formula.

In the definition of the formulas used metaletters A, ie characters that do not

belong subject language.

Examples of formulas: P, (P&Q), (R→ (P  R)).

Subformulas - is part of the formula, is the formula itself.

Set Language, we have built a formal system. Now imagine it as meaningful

propositional algebra, for this we give the meaning symbols of alphabet and

31

formulas. Propositional letters, and logical operations are defined in the field of

two elements {T, F}, T - True, F - False:

P Q PQ PQ P P→Q PQ

T T T T F T T

T F F T F F F

F T F T T T F

F F F F

T T T

The value of the formula E [P1, ... , Pn] at this interpretation of its constituent

propositional letters

 : {P1, ... , Pn} {T,F} we define by induction on the structure of the

formula:

E = P : E[] =  (P);

E = A : E[] = A[];

E = A&B : E[] = (A&B)[] = A[] & B[];

E = AB : E[] = (AB)[] = A[]  B[];

If in the formula the operation  is used only one, the formula is called the

formula with negation.

Tautology (universally valid formula, logical law) - a formula, true for all

interpretations of its constituent propositional letters, in other words, - the

column of values, which contains only true values (denoted by the symbol ╞)

Basic tautology.

 1а. ╞A→(B→A)

 1б. ╞(A→B)→((A→(B→C))→(A→C))

 2. ╞A→(B→A&B)

 3а. ╞A&B→A

 3б. ╞A&B→B

 4а. ╞A→AB

 4б. ╞B→AB

 5. ╞(A→C)→((B→C)→(AB→C))

 6. ╞(A→C)→((A→C)→ A)

 7. ╞A→A

32

 8. ╞(A→B)→((B→A)→(AB))

 9а. ╞(AB)→(A→B)

 9б. ╞(AB)→(B→A)

 10. ╞(A→(A→C)

Logic functions called n-place operation on the set {0,1}.

Alphabet:

(1) x,y,...,x1,x2,... - individual variables;

(2) f,g,...,f1,f2,... - functional symbols.

Term:

(1) x,y,...,x1,x2,... - individual variables are terms;

(2) If f(n) - a functional symbol, t1,...,tn - terms, then

f(n) (t1,...,tn) - term.

 The value of the term:

(1) if t - object variable x, then Val t =  (x);

(2) if t = f (n) (t1,...,tn), then Val t = f (n) (Val t1,..., Val tn).

Function:

f (n) (x1,...,xn) can be represented by the term t(v1, ..., vm), if {v1, ..., vm} 

{x1,...,xn} and t  = f (n)  for all interpretations  : {x1,...,xn}  {0,1}.

Examples 3.1.

1.The four-digit number of the 1952 decimal system is expressed thus:
0123

)10(10*210*510*910*11952 +++=

2.The number of a decimal system with a three-digit integer part and a three-

digit fractional part 596.174 (10) is expressed as follows:
321012

)10(10*410*710*110*610*910*5174.596 −−− +++++=

3. The number of a binary system with a four-digit integer part and a three-

digit fractional part 1010.101 (2) is expressed as:
3210123

)2(2*12*02*12*02*12*02*1101.1010 −−− ++++++=

Examples 3.2.

1. 3.14 - positive real number with fixed-point, the integer part 3, and the

fractional part 14. 2. 5 - positive integer 5.

3. 0.2 - positive real number with fixed-point, the integer part 0 and

fractional part 2.

33

4. -1.001 - negative real number with fixed-point, the integer part 1 and the

fractional part of 001.

5. 0.0 - positive real number, the integer part 0 and the fractional part 0.

Tests 3.

1. What will be important expression 2>5  2<6?

A) 2

B) 1

C) 5

D) 6

E) 0

2. What order of operations an expression DF  G?

A) first F, then F * G, and at the end DF  G.

B) first F  G, and at the end DF  G.

C) first F, and at the end DF  G.

D) first F, then F  G.

E), first G, then F  G, and at the end DF  G.

3. Which one is De Morgan's law?

A) (p)  p

B) p  p

C) (pq)  pq

D) pp  0

E) pp  1

34

4. LAWS OF LOGIC

Lecture objective: explain the concept and definitions of the laws of logic

and review their types.

Lecture plan: study the law of double negation, commutation law,

distribution law, law of exclusion of constants, law of contradiction, law of

excluded middle, the duality principle, logical corollary, rules of logical

corollary, modus ponens rule.

Laws of logic consist of the following tautologies:

1) ╞AA (law of excluded middle)

2) ╞A→A (law of identity)

3) ╞(AB) A&B (first de Morgan’s law)

4) ╞(A&B) ~ AB (second de Morgan’s law)

5) ╞A&AA, =AAA

6) ╞ A→B ~ A B

7) ╞(AB) ~ (A→B)&(B→A)

8) ╞(A→B) ~ (B→A) (contraposition law)

9) ╞A&BB&A (conjunction commutability)

10) ╞ABBA (disjunction commutability)

11) ╞ A&(B&C)  (A&B)&C (conjunction associativity)

12) ╞A (BC)  (AB)C (disjunction associativity)

13) ╞A& (BC)  (A&B) (A&C) (first law of distributivity)

14) ╞ A (B&C)  (AB) & (AC) (second law of distributivity)

15) =A&(AB)  A, =A(A&B)A (absorption laws)

16) =A&ИA, =A&ЛЛ, =AИИ, =AЛA.

17) ╞A→ (B→C) ~ A&B→C.

Let E be a formula with close negations which does not contain other

operations except ,, . The EX formula is the result of substituting all

conjunctions in E with disjunctions and each proposition letter with its negation.

Then ╞ Е ~ ЕX.

The duality principle. Let E, F not contain other operations except , ,

 and let them be formulas with close negations. The formulas E, F obtained

from E, F by simultaneous substitution of all & with  and  with & are called

35

dual with regard to the formulas E and F correspondingly. Then the following

relations exist:

a) if ╞ E, then ╞ E. b) if ╞E, then ╞ E.

с) if ╞ EF, then ╞ EF. d) if ╞E→F, then ╞ F→E.

Logical corollary. Let there be formulas A1,A2,...,Am and B. If from the

simultaneous truth of the formulas A1,A2,...,Am there follows the truth of the

formula B, then the formula B is a logical corollary of the formulas A1,A2,...,Am;

this is indicated as A1,A2,...,Am ╞ B, (m1), where A1,A2,...,Am are premises and

B is a corollary.

Logical corollary rules. For computation of relations one single rule called

modus ponens is used which represents a procedure of transition from two

formulas of the type A,A→B (premises) to the formula B (corollary):

A, A B

B

→
 (modus ponens)

Corollary rules must satisfy the requirement that true premises lead to true

corollaries.

Predicates are logical functions J(n) (x1,...,xn) given in a non-empty space D

and acquiring value in the set {И,Л}.

The predicate J(n)(x1,...,xn) becomes an expression after its variables are

attributed to the elements of the set D.

Alphabet:

(1) x,y,z,...,x1,x2,... – object variables;

(2) P(n) (x1,...,xn),... – predicate letters (n=0,1,...);

(3) &, ,, →, , ,  – logical connectives and quantors;

(4) (,) – auxiliary symbols.

Formulas:

(1) P(n) (x1,...,xn), – elementary formulas or atoms;

(2) if A, B are formulas, then A&B, AB, A, A→B, AB – are

formulas as well;

(3) if A(x) is a formula with a free variable x, then xA(x), xA(x) are

formulas.

Free and bound variables. All variables existing in the space of action of

the quantor at such variables are called bound variables, otherwise they are

called free variables.

36

Formula interpretation. The value of the formula E[P1,...,Pm; x1, ...,xn] for

interpretation of the predicate letters : P(n)J(n) and attribution of : {x1,...,xn}

D (D) to object variables is denoted E[,]. Let us define induction for

construction of the formula E:

1) E = P(n) (x1,...,xn), then E[,] = J[];

2) E = (A&B)[P1,...,Pm ; x1,...,xn], then E[,] = A[,] & B[,].

Analogously for other logical connectives.

3) E=x1A[P1,...,Pm;x1,...,xn], then E[,] = x1A[,x1,]=И,

where : {x2,...,xn}D, if A [,a,] = И for any aD.

4) E=x1A[P1,...,Pm; x1, ...,xn], then E[,] = x1A[,x1,] = И,

where : {x2,...,xn}D, if A [,a,] = И for some aD.

 The formula E[P1,...,Pm; x1,...,xn] is called a universally valid formula or

tautology if for any space D, for any interpretations  of predicate letters

and any attributes  to object variables in interval D, E[,] = И.

Logical foundations of computer consist of logic algebra which emerged

in mid-19th century in the works of English mathematician John Boole. Its

creation was due to an attempt to solve traditional logical problems by algebraic

methods using logical operations such as , &,  denoting words and word

combinations "not", "and", "or"". With help of these logical operations a

logical expression of any complexity may be constructed.

Hardware implementation of the mentioned logical operations is realized by

means of the following logical elements of computer shown in figure 4.

Figure 4. Logical elements of computer.

Examples 4.1.

Let us show that the formula P(x,y) →Q(x) is not 1-valid and, consequently,

not universally valid.

NOT AND OR

A & v
A

A
A

A&B AvB

B

B 

37

Solution. D={1} is one-element set, I1 and I2 – interpretations of the letter

P, and J1 and J2 – interpretations of the letter Q:

x y I1 I2 J1 J2

1 1 И Л И Л

Truth-table of the formula P(x,y)→Q(x) :

x y P(x,y) Q(x) P(x,y)→Q(x)

1 1 И И И

1 1 И Л Л

1 1 Л И И

1 1 Л Л И

Examples 4.2.

Let us show that the formula xyP(x,y)→yxP(x,y) is not universally

valid.

Solution. Let D={1,2}, then the interpretations of the predicate letter P(x, y)

may be given by means of the following table:

X Y J1 J2 J3 J4  J7 

1 1 И И И И  И 

1 2 И И И И  Л 

2 1 И И Л Л  Л 

2 2 И Л И Л  И 

In particular, for interpretation J7 we obtain: for x=1: yJ7(1,y)И; for x=2:

yJ7(2,y)И, then xyJ7(x,y)=И. For y=1: xJ7(x,1)=Л, for y=2: xJ7(x,2)=Л,

then yxJ7(x,y)=Л. It follows that xyJ7(x,y)→yxJ7(x,y) = Л.

Examples 4.3.

Let us show that the formula x(xP(x)→P(x)) is not 2-valid.

Solution. D={1,2}, J1, J2, J3, J4 – interpretations of the letter P :

38

x J1 J2 J3 J4

1 И И Л Л

2 И Л И Л

Truth-table of the formula x (xP(x)→P(x)):

x P(x) xP(x) xP(x)→P(x) x(xP(x)→P(x))

1

2

J1

J1

И И

И

И

1

2

J2

J2

И И

Л

Л

1

2

J3

J3

И Л

И

Л

1

2

J4

J4

Л И

И

И

Examples 4.4.

Let Р be a false statement 1 = 5, Q is a false statement as well 3 = 7 and R

is a true statement 4 = 4. Demonstrate that conditional statements: «if Р, then Q»

and «if Р, then R» are both true.

Solution. If 1 = 5, then adding 2 to both parts of the equality we obtain 3 =

7. Therefore, the statement «if Р, then Q» is true. Now let us subtract 3 from both

parts of the equality 1 = 5 obtaining –2 = 2. Therefore, (–2)2 = 22, i.e. 4 = 4.

Therefore, «if Р, then R» is true as well.

Problems 4.

1. Translate each of the following arguments into logical symbols and

analyze the correctness of the result:

1) I would pay for television repair only if it functioned. It does not. For

this reason, I will not pay.

2) If he had told her nothing, she would never have found it out. And if

she had not asked him, he would not have told her. But she found it out.

Therefore, she asked him.

3) He said he would come if it did not rain. But it is raining. Therefore,

he will not come.

39

2. Check the correctness of argument: Ivanov will not do this work if Petrov

does it. Petrov and Sidorov will do this work if and only if Ivanov does it.

Sidorov will do this work, and Ivanov will not. Therefore, Petrov will not do this

work.

3. Which formulas yield the following formula sequences: A⊃(B⊃C), A,

B⊃C, B, C.

Questions 4.

1. Are the following expressions equivalent?

1) A∧B and A and B?

2) A∧B and not only A, but also B?

3) A∧B and B, even though A?

4) A∧B and B, in spite of A?

5) A∧B and both A, and B?

2. Are the following expressions equivalent?

1) A∨B and A or B?

2) A∨B and A or B?

3) A∨B and A, if not B?

4) A∨B and A and B?

5) A∨B and A or B?

3. Are the following expressions equivalent?

1) A∼B and A, if and only if B?

2) A∼B and if A, then B, and vice versa?

3) A∼B and A, if B, and B, if A?

4) A∼B and A equivalent to B?

5) A∼B and A if and only if B?

4. For which of the statements X: X=1, X=6, X=5, X=3, X=4 are the

relations (X>3) & (X<5) true?

5. For which of the words “Informatics”, “Psychology”, “Economics” will

the statement “The first letter is consonant, and the second letter is a vowel” be

true?

6. Which of the following statements are true, and which are false?

(a) The sum of interior angles of any triangle is 180°.

(b) All cats have a tail.

40

(c) There is an integer х satisfying the equation х2 = 2.

(d) There is an even prime number.

(e) Snow is white.

(f) The Earth revolves around the Moon.

(g) Paris is the capital of France.

(h) To govern is to know.

 Tests 4.

1. What characterizes the law of excluded middle?

1) Implication of two statements is equivalent to the inverse implication

of their negations.

2) Any statement is either false or true, no third possibility exists.

3) Any statement is the logical corollary of itself.

4) To negate a negation of a statement is equivalent to its assertion.

2. Interpretation is:

5) Concepts whose application to logical calculation expressions

depends in great measure on the choice of interpretation.

6) Juxtaposition of every elementary expression р with a certain true

value.

7) Concepts whose application to logical computation depends in great

measure on the choice of interpretation.

8) Relation between objects which means that the state or properties of

any of them change if the state or properties of others are changed.

3. Is the logical connective «or»:

1) connective?

2) exclusive?

3) divisive?

4) auxiliary?

5) negating?

4. What characterizes the law of double negation:

1) Any statement is either false or true, no third possibility exists.

2) Any statement is the logical corollary of itself.

3) To negate a negation of a statement is equivalent to its assertion.

4) Any statement is the logical corollary of itself.

41

5. GRAPHS

The purpose of the lecture: to consider the concept of the graph, the types

of graphs and their properties.

Outline of the lecture: to explore formal definitions and ways to represent

graphs, to analyze different types of graphs and types of applications of graphs

for various tasks.

Definitions 6.1:

The graph is a dynamic networking connected structure of data represented

by of a plurality of pairs called vertices and edges. Each vertex can be connected

with several other vertices or with itself by means of edges and vertices, which

do not form a hierarchy. Formally, a graph is defined as a set of pairs of G = (X,

A), where X - the set of vertices, A - the set of edges, actually is a relation on a

set X, i.e. XXA  . If ix ∊ X and jx ∊ X – vertices , then),(ji xx – edges.

There are several types of graph. If from each vertex of the graph originates

equal number of edges and if equal number of edges goes in each vertex, such a

graph is a regular graph. If for each edge of the graph direction is defined, the

graph is called a directed graph. If each edge of the graph has a weight, a graph

is called weigthed graph, i.e., you can define a function w : E, where R - the set

of real numbers, w -weight of graph and w≥0.

Matrix of adjacency is one of the ways to represent a graph in the form of a

matrix.

Matrix of adjacency of a graph G with a finite number of n vertices

(numbered from 1 to n) is a square matrix A of size n, wherein the value of

element ija equals to number of edges from the i-th vertex in the j-th vertex.

Sometimes, especially in the case of an undirected graph, the loop (the edge of

the i-th vertex in itself) counts as two edges, i.e., the value of the diagonal

element ija in this case equals to double number of loops around the i-th vertex.

Matrix of adjacency of a simple graph (not containing loops and multiple

edges) is a binary matrix which contains zeros on the main diagonal.

In graph theory are used following:

− Incidence matrix. This matrix A with n rows corresponding to the vertices

and m columns corresponding to the edges. For a directed graph column

42

corresponding to the arc (x, y) contains - 1 in the row corresponding to vertex x,

and 1 in the row corresponding to the vertex y. In all others 0. Loop, i.e. arc (x,

x) may be represented by a different value in the row x, e.g., 2. If an undirected

graph, the column corresponding to the edge (x, y) contain 1, the corresponding

x and y and zeros in all other rows.

− The matrix of adjacency. This is a matrix n × n where n - the number of

vertices, where aij =1, if there is an edge going from vertex x to vertex y and

aij=0 otherwise, i.e.:

ija - the number of edges connecting vertices iv and jv , and in A) in some

applications of each loop (an edge },{ ii vv for some)) is counted twice;

B) adjacency matrix of empty graph, does not contain any edges, consists of

zeroes.

Below are examples of incidence matrix of and adjacency matrix for continuous

graph shown in Figure 6.1

Figure 6.1 Incidence matrix Adjacency matrix

Given a graph),(AXG= , where }{xX i= , i = 1, 2, ..., n – the set of

vertices, }{a jA= , j = 1, 2, ..., m – the set of arcs.

Subgraph)','(' AXG = of the original graph G is a graph G ', for which

XX ' и AA ' . Examples of subgraphs are shown in Fig. 6.2, b, and

original graph - Fig. 6.2 a.

43

Figure 6.2. Types of subgraphs: a - the original graph; б - subgraphs; в -

spanning subgraph; г - induced subgraphs

If A - adjacency matrix of the graph G, the matrix A
n has the following

property: item at the i-th row, j-th column is equal to the number of paths from

the i-th vertex to the j-th consisting of exactly n edges.

The path in a graph is a sequence of edges leading from one vertex to

another vertex, such that every two neighboring edges have a common vertex

and no edge occurs more than once, that is, formal path in a graph is a sequence

of vertices),,,,,(m1m321 xxxxx −... , that pairs)},(),...,,(),,{(m1m3221 xxxxxx −

will be edges. Two vertices ix ∊ X and jx ∊ X in the graph is called connected

(disconnected), if it exists (do not exist) the path leading from ix to jx . This

path can be in both directions. If every two vertices in the graph are connected,

then this graph is a connected graph. If the graph contains at least one pair of

44

disconnected vertices, the graph is disconnected. If all pairs of vertices connected

in both directions, so the graph is strongly connected graph.

The path with no repeated edges is called a chain and the chain without

repeated vertices called simple.

Chain in which the end vertices coincide is called a cycle, and the cycle in

which no recurring peaks other than the end, called simple, i.e. the path way back

to the same vertex, then that path is called the closure (cycle), i.e. in the closure

of the initial and final vertices are the same. If the closure does not pass through

one of the vertices of the graph more than once, it is called a simple closure. If

the closure originates from a single vertex and directly enters into the top back,

it is called a loop, i.e, the loop has a unique vertex.

The length of the path is the number of edges of this path. If the weights of

the edges are their length, then the path length is calculated as follows:


−

=

+− =
1m

1i

1iim1m321)()(xxwxxxxxw ,,,...,,,
.

In the graphs you can perform the following tasks: a comparison of the two

graphs, finding the shortest path from one vertex to another, finding the number

of closed paths and etc.

A tree is a graph in which all vetices are connected, and the paths are not

closed, i.e., connected graph is without cycles and without loops.

The tree vertices are divided into the following types:

 1) the root – a vertex, from which originates one or more edges, but

enter no edge, i.e., a vertex, which does not have a single ancestor, but it can

have many descendants;

2) branch - the vertex, to which enters a single edge, but many egdes can

originate from it, i.e., the veretx which has a single ancestor and can have many

descendants;

3) sheet - the vertex, to which enters only one edge, but originate no edge,

i.e. the vertex which has a single ancestor, but does not have any descendants.

In the tree the direction of path passes through the branches from the root to

the leaves. Inside the tree can be a few trees, which will be called subtrees.

You can now give the following recursive definition (referring to itself):

45

1. A recursive basis: the set {v}, consisting of only one vertex v is a tree

where its unique vertex is both the root and leaf.

2. Recursive step: if v - vertex and nAAA ,...,, 21 - the trees, then it is possible

to build a new tree in which the root is the vertex v, and edges – originates from

this vertes and enters the roots of nAAA ,...,, 21 trees.

3. Recursive conclusion: Trees obtained only by rules 1 and 2.

This definition of a tree can be represented in Figure 6.3 as follows:

 A1 A2 . . . An

Figure 6.3. Determination of tree

From this definition it is clearly evident that the tree is a hierarchical

connected dynamic structure of data represented by single root vertex and its

descendants. The maximum number of descendants of each vertex and

determines the size of a tree.

Among the trees stands out, the so-called binary trees. It can be defined as

follows:

Binary Tree - a tree in which each node has at most two descendants. This node

is called the parent node and the descendants are called left heir and right heir.

We give a recursive definition of a binary tree. A binary tree is the following set

of vertices:

− either contains nothing (the empty set);

− or consists of a root, which is connected with two binary trees, called left-hand

subtree and right-hand subtree.

Thus, the binary tree is either empty or consists of data and two subtrees,

each of which may be empty. If in some vertex two subtrees are empty, then it

is a leaf. Formally, a binary tree is defined as follows:

<binary tree> :: = nil | (<data> <binary tree> <binary tree>)

where nil - empty.

v

46

The following tasks are solved in trees: tree traversal, search for tree,

adding a new node to the tree, destroying the tree tops, comparisons of trees and

others.

Binary trees are used in the search algorithms: each vertex of binary search

tree corresponds to an element of a sorted set, all his left descendants the left to

fewer elements, and all his right descendants to a great element. Each node in

the tree is uniquely identified by a sequence of non-recurring vertices

from the root and until it – by path. The path length is a level of node in the

hierarchy tree. For practical purposes, generally two subspecies of binary trees

are used: binary search tree - binary search tree (BST) and binary heap.

Binary search tree has the following properties:

− the left subtree and the right subtree are binary search trees;

− all the vertices of the left subtree of v arbitrary vertex has value of key of

data that is less than the value of key of data of the vertex v itself;

− all the vertices of the right subtree of the same vertex v has value of key

of data that is greater than the value of key of data of vertex v.

Clearly, data from each node should have keys on which the comparison

operation is determined.

Binary heap or sorting tree has the following properties:

− value at any vertex is not less than the values at the vertices of its

descendants;

− leaf depth (distance until the root) does not differ by more than one layer;

− the last layer is filled from left to right.

Such heap is called max-heap. There are also heaps, where the value in each

vertex, conversely, no more than the values of its descendants. Such heaps are

called min-heap.

Examples 6.2:

1. A binary relation over finite objects can be represented as a directed graph

as shown in Figure 6.4. The following shows the relationship divisibility of

integers from 1 till 12: 2 and 3 divided by 1; 4 and 6 is divided into two; 6 is

divisible by 2 and 3; 12 divided by 4 and 6.

47

Figure 6.4. Representation of binary relation

2. Presentation of a binary tree shown in Figure 6.5.

Figure 6.5. A binary tree.

3.Bypass of binary tree of arithmetic expression

((3 + 1) * 3 / (9-5) 2 + (3 * (7-4) 6)

from the top to the bottom and from the left to the right is shown in Figure

6.6.

Figure 6.6. Bypass of tree

R

R1 L1

L2 L3 R2 R2

Left subtree Right subtree

48

Exercises 6.1:

1. Build a directed weighted graph for describing the structure of identifier.

2. Build the tree for the expression ((a / (b + c)) + (x * (y - z))).

3. Determine the adjacency matrix A of an undirected graph that contains a

loop around the vertex one, which depending on the application element 11a

may be considered equal to one (as shown below), or to two.

Figure 6.1. Undirected graph

Help:

1. Without loss of generality, to facilitate the construction of the desired graph

we will consider not letters, but only one letter not numbers, only one number,

which will serve as weight for required weighted graph.

2. In the corresponding binary tree, leaves are operands, and other vertices are

operations.

3. The adjacency matrix

Exercises 6.2:

On a finite set N = {1, 2, 3, 4, 5} is given binary relation.

R = {(1,2), (1,4), (1,5), (2,3), (3,2), (3,4), (4,4), (4,5) , (5,3), (5,4)}.

Record domain and the range of values for this relation. Draw a graph of this

relation. Make up adjacency and incidence matrix for it.

Question 6:

1. How path is formed in the graph?

https://commons.wikimedia.org/wiki/File:6n-graph2.svg?uselang=ru

49

2. What edges are called multiple?

3. What vertex is called an isolated?

4. What is the level of the isolated vertices?

5. What means the level of vertex?

6. What graph is called a cyclic?

7. What is the incidence matrix?

Test 6:

1. What are the types of graphs?

A) directed graph, undirected graph;

B) directed graph, defined graph;

C) specified graph, undirected graph;

D) specified graph, unsepcified graph;

E) unspecified graph, undirected graph.

2. What is a tree?

A) graph without loops and cycles;

B) graph without weights;

C) graph without networks and cycles;

D) weighted graph;E) directed graph.

3. What is a binary tree?

A) tree in which each vertex has at most two descendant;

B) tree, which has two vertices;

C) tree, which has no cycle;

D) tree, which has no loop;

E) tree, in which one vertex has no direct descendants.

50

6. FORMAL GRAMMARS

6.1. General information

In this section, formal grammars will be considered mechanisms of language

generation, the relationship of derivability and language generated by formal

grammar, examples are proposed, tasks are given, questions and tests are

formulated. For the preparation of educational materials, sources were used [1-

9,11-18,21,25,27-32].

An important class of mechanisms for the generation of languages is formed

by formal grammars (Formal Grammar), which were first introduced in 1959 by

the American linguist Chomsky [24].

The formal grammar that generates the language L uses two disjoint sets of

symbols:

1) A finite set of terminals (terminals) – constants T, from which chains of

the language L are formed;

2) A finite set of nonterminals – variables N disjoint with the set T, which

denote grammatical concepts, categories, etc. language L.

3) The process of generating L strings is described by a finite set of rewriting

rules P, each of which consists of pairs of strings (α, β). In such a pair, the first

component α is a string containing at least one nonterminal, and the second

component can be any string formed from terminal and / or nonterminal symbols.

It can also be an empty chain.

Agreements 6.1.1. The following agreements are accepted:

(1) lowercase latin cursive letters a, b, ..., z and Arabic numerals 0, 1, ...,

9 designate terminals;

(2) uppercase latin cursive letters A, B, ..., X, Y, Z denote nonterminals, while

S denotes the initial nonterminal symbol;

(3) lowercase Greek letters α, β, ..., ω denote strings that can contain both

terminals and nonterminals, here ε is an empty string;

(4) the substitution rule, which is a pair of chains (α, β) from the set P, is

written as α → β;

(6) rules of the form α → ε are called ε (epsilon) -rules;

(7) these agreements also apply to letters with subscripts and superscripts;

(8) rules of the form α1α2…αm→β is a cancellation of m rules of the

form α1→β, α2→β, …, αm→β or: α1→β, α2→β, …, αm→β

51

 (9) rules of the form α→β1β2…βn is an abbreviation of n rules of the

form α→β1, α→β2, …, α→βn or: α→β1, α→β2, …, α→βn

 (10) a rule of the form α1α2…αm→β1β2…βn is an abbreviation of

m × n rules obtained from agreement (6) and (7)

Definition 6.1.1. A formal grammar is the following quadruple G = <T, N,

P, S>, where:

T is a non-empty finite set of terminal symbols (terminals);

N is a nonempty finite set of nonterminal symbols (nonterminals), and T ∩

N = Ø, Ø is the empty set;

Р is a non-empty finite set of permutation rules of the form α → β, where

α∈(T ∪ N)*N(T ∪ N)*, β∈(T ∪ N)*, that is,

P ⊆ {(α,β): α∈(T ∪N)* (T ∪N)*&β∈(T ∪N)*};

S is the initial nonterminal, S∈N.

The inference rules of a grammar can be viewed as elementary operations

that, when applied in a certain sequence to the original string, generate only

correct strings. The very sequence of rules used in the process of generating a

certain chain is the output of this chain.

A grammar-defined language is a set of finite strings that consist only of

terminals. All these terminal chains are deduced starting with one special chain,

consisting of only one initial nonterminal S.

The inference rules of a grammar can be viewed as elementary operations

that, when applied in a certain sequence to the original string, generate only

correct strings. The very sequence of rules used in the process of generating a

certain chain is the output of this chain.

A grammar-defined language is a set of finite strings that consist only of

terminals. All these terminal chains are deduced starting with one special chain,

consisting of only one initial nonterminal S.

Examples 6.1.1. Grammar G = <T, N, P, S> with parameters: P

={S→E, E→E+ V, | E- V,|V, V→V*F|V/F|F, F→a|(E)}, N = {S, E, V, F}, T =

{+, -, /, *, (,), a} generates a parenthetical algebraic expression in infix

notation.

To define a language with the help of grammar, the notion of a

derivable string and an immediate derivability relation are used.

52

Definitions 6.1.2:

1. Let α, β, γ be derivable strings of the grammar G

= <T, N, P, S>. Then the outputted strings are recursively defined as

follows:

1) S is the outputted string of the grammar G;

2) If αβγ is a deducible chain of G and P has a rule β → δ, then αδγ is

also a deducible chain of G.

2. The deduced string of the grammar G that does not contain

nonterminal symbols from N is called the terminal string generated by the

grammar G.

3. If α = γξδ, β = γηδ and α → β, ξ → η are the inference rules of the

grammar G, then it is said that an immediate derivability relation is

established between the strings α and β, which means that in the grammar

G the string β is directly derived from of the chain α by replacing ξ with

η, and this relation is denoted by α⇒Gβ. If the grammar is known in

advance, then the exponent G in relation to direct deducibility is omitted

and this relation is written as α⇒β.

A notation of the form α⇒kβ is the k-th power of the relation α⇒β, If

there are k+1 chains α0, α1, ...,αk such that α=α0, αk=β and αi–1 ⇒αi (1 i 

k) This sequence of strings is called the derivation of length k of the string

β from the string α in the grammar G.

If there exists i1 (or i0) the relation α⇒iβ holds, then this is written

as α⇒+β (or α⇒*β). Here, ⇒+ denotes the transitive closure of the relation

⇒, and ⇒* denotes the reflexive and transitive closure of the relation ⇒.

In this case, the notation of the form α⇒+β (α⇒*β) reads as: “β is

deducible from α in a non-trivial way” (“β is deducible from α”).

Remark 6.1. α⇒*β if and only if α⇒iβ for some i0, and α⇒+β if and

only if α⇒iβ for some i0.

Definitions 6.1.3.

1. Each string that is derived from the initial nonterminal of the grammar

is called a sentence form.

2. Output strings that do not contain nonterminal symbols are called

terminal strings. Therefore, the language L(G) can be defined as the set of

terminal strings deduced in the grammar G.

53

3. The language L(G) generated by the grammar G is the set of terminal

strings that are derived from one initial nonterminal S by applying the

substitution rule from the set P, that is, formally written as L(G) ⇌ {τ: τ∈T*,

S⇒*τ}.

This means that any string belonging to the language L(G) is a sentence

form.

Examples 6.1.2.

1. Let the grammar G1 = <Т, N, P, S> be given, where T = {0,1} is the

set of terminals, N = {A, S} is the set of nonterminals, Р = {S→0A1,

0A→00A1, A→ε} is a set of substitution rules. If we consider an inference of

the form S⇒0A1⇒00A11⇒0011, then we can see that at the first step the

nonterminal S is replaced by the chain 0A1 by the rule S → 0A1, at the second

step the chain 0A by the rule 0A → 00A1 is replaced by the chain 00A11, and

at the third step nonterminal A is replaced by the empty string ε by the rule A

→ ε. Thus, we can say that S⇒30011, S⇒+0011, S⇒*0011 and the string 0011

belongs to the language L(G1) = {0n1n: n>1}.

2. A grammar with rules Р1 = {S→01S, S→0} and a grammar with rules

Р2 = {S→0A, A→10A, A→ε} are equivalent.

3. Two grammars for generating algebraic expressions formed by

operands i, n and operations +, * with the same terminal symbols T = {i,

n, (,), +, *} and nonterminal symbols N = {S, F, H} but with different rules:

Р1 = {S→S+F|F, S→S+F|S*F|F, F→F*H|H, H→i|n|(S)} and

Р2={S→S+F,S→F,F→F*H, F→H, F→H, H→i,H→n,H→(S)}

are equivalent.

With the help of formal grammars, it is possible to generate various classes

of languages by imposing restrictions on their inference rules:

1. Any grammar whose inference rules do not impose any restriction

belongs to class 0 and is called an unrestricted grammar (NG), is an

unrestricted grammar, and the set of strings generated by this grammar will be

a recursively enumerable language.

2. A grammar in which all inference rules of the form α → β are

constrained α = H, β=, ∈(T∪N)* , H∈N, ∈(T∪N)+ , ∈(T∪N)*

belongs to class 1 and is called a context-sensitive grammar (CSG), and the set

of strings generated by this grammar will be a context-sensitive language.

54

3. A grammar in which the constraint A∈N , α∈(T∪N)* is imposed on all

inference rules of the form A→α is of class 2 and is called a context-free

grammar (CFG) and the set of strings generated by this grammar will be

Context-free language.

4. A grammar in which all inference rules have the form A→αBβ or

A→α , where A, B∈N , α , β∈T* is of class 3 and is called a linear grammar

(LG). In a linear grammar, If β = ε, then it will be a right-linear grammar

(RLG), and If α = ε, then it will be a left-linear grammar (LLR). The set of

strings generated by the left-linear grammar will be called the left-linear

language, and the set of strings generated by the right-linear grammar - the

right-linear language.

Remarks 6.1.2.

1. In some sources, context-free grammar is called context-free grammar

(CFG), context-sensitive grammar is called context grammar (CG) or non-

truncating grammar or grammar of the immediate components.

2. Each linear grammar is a context-free grammar.

3. Every contextless grammar is a contextual grammar.

4. Each contextual grammar is a grammar without limitation.

5. Any linear language is its own subset of a contextless language, but a

contextless language may not be linear.

6. Any context-free language that does not contain an empty string will be

its own subset of the context language.

7. Any contextual language is contained in a recursively enumerated

language.

8. If L0, L1, L2, L3 are languages generated by grammars of type 0, 1, 2, 3,

respectively, then L3 ⊆ L2 ⊆ L1 ⊆ L0 is true.

Examples 6.1.3.

1. The language {а
n
b

n
c

n
, n ≥ 0} generated by a grammar with inference

rules S→aSBC, S →aBC, CB→BC, aB →ab, bB →bb, bC→bc, cC→c will be

recursively enumerable. Here you can apply the rules in any order, only it is

necessary to apply the rule S→aBC (for fixing n), and the rule bC→bc should

be applied only after there are no B to the right of C (otherwise this B cannot

be replaced by b and the output will not end with a terminal chain).

55

2. The set of Boolean formulas given by the variables a, b, c will be a

context-free language, since it is generated by a context-free grammar Р =

{S→¬S, S→S˄F, S→S˅F, S→F, F→а|b|с, F→ (S)}, N={S, F}, Т={а, b, с, ¬,

˄, ˅, (,)}

3. Let G = <{S}, {a, b}, {S→aSa, S→b}, S>. Then aSa⇒3aaaaSaaaa.

4. A grammar with such rules S→ASQA, S→AbA, A→a, bQ→bb,

AQ→UQ, UQ→UV, UV→QV, QV→QA is contextual, but not context-free,

since the last five rules do not have the required form.

5. A grammar with the following rules S→QS, S→US, S→b, Qb→Ab,

A→a, QA→AAQ, UAb→b, UAAA→AAU is not context free, since the last 3

rules do not have the required form.

Definitions 6.1.4.

1. If the language L(G) generated by the grammar G does not contain any

finite string (final word) of terminal symbols, then it is called an empty language,

that is, L(G) = Ø.

2. For the language L(G) to be non-empty, there must be at least one rule of

the form ξ→ω and there must be a derivation S ⇒* ξ, where S∊N is the initial

nonterminal, ξ ∊(T ∪ N)*N(T ∪ N)*, ω∊T*.

3. If in the grammar G the inference rules form a closed loop, then such a

grammar generates an infinite language, i.e. L(G)=;

4. If ∈L(G) holds for any string  and a given grammar G, then  is a chain

in the language L(G);

5. If for any two grammars G’and G’’, L(G’)=L(G’’) is satisfied, then

grammars G’and G’’are equivalent.

Examples 6.1.4.

1. A grammar with rules S → Q, U → abba generates an empty language,

denoted as Ø.

2. A grammar with rules S → aS generates an infinite language denoted as

;

3. A grammar with rules S→abS, S→a and a grammar with rules S→aU,

U→baU, U→ε are equivalent.

Considering the above, the following algorithmic problems of grammars can

be considered:

56

1. The problem of emptiness - for a given grammar G, find out whether L(G)

is an empty language, i.e. L(G) = Ø?

2. The membership problem - for any string , find out whether it belongs

to the language L(G) generated by a given grammar G, that is, ∈L(G)?

3. The problem of equivalence - for any two grammars G’and G’’ find

out whether they will be equivalent, i.e. L(G’)=L(G’’)?

4. The problem of closedness - when applying a multiple operation to

languages of a certain type, find out if the result will have the same type?

5. The infinity problem - for a given grammar G, find out whether L(G) will

be an infinite language, that is, L(G) = ?

Tasks 6.1.

1. Construct all sentences for grammar with rules:

 S→A+B|B+A, A→a, B→b.

2. Build the output of the given chain a-b*a+b for grammar with rules:

 S→K|F+S|K-S, K→F|F*K, F→a|b.

3. Build the output of the given chain aaabbbccc for grammar with rules:

 S→aSBC|abC, CB→BC, bB→bb, bC→bc, cC→cc.

4. Describe the language generated by grammar

 S→FF, F→ aFb, F→ab.

5. Describe the language generated by grammar

 S→Sc, S→A, A→aAb, A→ ε.

6. Describe the language generated by grammar

 S→ε, S→a, S→b, S→aSa, S→bSb.

7. Describe the language generated by grammar

 S→SA, SAA→ASb, ASA→b, A→a.

8. Describe the language generated by grammar

 S→aSA, S→abc, bA→bbc, cA→Aa.

9. Describe the language generated by grammar

 S→aAS, S→B, Aa→aaA, AB→B, B→a.

10. Find a linear grammar generating the next languageк {ambnc: τ∈{a,b}*,

m≥0, |τ|b=2}.

11. Find a linear grammar generating the next languageк {anτ: n≥1, m≥1.

12. Find a linear grammar generating the next languageк {a,b}* - anbncn:

n≥0.

57

13. Find a linear grammar generating the next languageк {αaβb: α∈{a,b}*,

β∈{a,b}*.

14. Find a linear grammar generating the next languageк {a,b,c}* - {τcτ:

τ∈{a,b}*}.

15. Find Right Linear Grammar Equivalent to Grammar S→KbbaK,

K→Ka, K→Kb, S→ε.

16. Find Right Linear Grammar Equivalent to Grammar S→aSb, S→K,

S→J, K→aK, J→Jb, K→a, J→ε.

Questions 6.1.

1. Are the following grammars equivalent

S→ab, S→aKSb, K→bSb, KS→b, K→ε

and

S→aAb, A→ε, A→b, A→S, A→bSbS ?

2. Are the following grammars equivalent

S→aD, D→bba, D→baDa, D →aDaDa

and

S→aaE, S→abD, E→bDD, D→aaEa, D→abDa, D→ba ?

3. What class does the grammar belong to?

S→abba, S→baa ?

4. What class does the grammar belong to?

S→AD, A→aA, A→ε, D→bDc, D→ε

5. Are the following grammars equivalent

S→AB, A→a|Aa, A→a|Aa

and

S→AS|SB|AB, A→a, B→b ?

6. Are the following grammars equivalent

S→cE, E→ddc, E→dcEc, E→cEcEc

and

S→ccA, S→cdB, A→dBB, B→ccAc, B→cdBc, B→dc?

7. How can an unambiguous grammar describe a language that is generated

by an ambiguous grammar Ε→E+E|E*E|(E)|i.

Tests 6.1.

1. What will be the language{а2n-1, n≥1}, if it is generated by the grammar

58

N={S}; T= {a}, Р = {S→a, S→aaS}?

А) right-linear language.

B) left-linear language.

C) context-free language.

D) context-sensitive language.

E) recursive language.

2. What will be the language{а2n-1}, if it is generated by the grammar

N={S}, T={a}, Р={S→a, S→Saa}?

А) left-linear language.

B) right-linear language.

C) context-free language.

D) context-sensitive language.

E) recursive language.

3. What will be the grammar with the rules: S→aSa, S→Q, Q→bQ, Q→ε?

А) left linear

B) right linear

C) context-free

D) context-sensitive

E) recursive.

4. What will be the languageT* in the alphabet T = {t1, t2,…, tn}, if it is

generated by the grammar S→ε, S→ t1S, S→ t2S, ..., S→ tnS?

А) right-linear language.

B) left-linear language.

C) context-free language.

D) context-sensitive language.

E) recursive language.

5. What will be the grammar with the rules: S→QQ, Q→cQQ, S→a?

А) context-free

B) right linear

C) left linear

D) context-sensitive

E) recursive.

59

6.2. Regular grammars

This section will consider regular grammars, their types and properties, and

also offer examples, given tasks, formulated questions and tests. for the

preparation of training materials, sources were used [1-9,11-13,28-32].

Let a formal grammar G = <N, T, P, S> be given, where N is a finite set of

nonterminals, T is a finite set of terminals, T∩N = Ø, P is a finite set of inference

rules, S is an initial nonterminal, S∈N. Then the following definitions can be

given:

Definitions 6.2.1.

1. If in the grammar G for each A, B∈N, τ∈T* all inference rules are given

in the form A → τB or A → τ, then it is called a right-linear grammar.

2. The set of strings generated by a right-linear grammar is right-linear

language.

3. A right-linear grammar is found G = <N, T, P, S> in normal form, If each

rule in it has the form A → ε, A → a or A → aB, where A∈N, B∈N, a∈ T.

4. If in the grammar G for each A, B∈N, τ∈T* all inference rules are given

in the form A → Bτ or A → τ, then it is called a left-linear grammar.

5. The set of strings generated by the left-linear grammar is left-linear

language.

6. A left-linear grammar is found G = <N, T, P, S> in normal form, If each

rule in it has the form A→ε, A→a or A→Ba, where A∈N , B∈N , a∈T.

7. Linear grammar is in normal form, If in linear grammar each rule has the

form A→ε , A→α , A→αB or A→Bα , where A∈N , B∈N , α∈T* .

8. If in the grammar G for each A∈N , B∈N , α∈T* , β∈T all inference

rules are given in the form A→αBβ or A → α, then it is called a linear grammar.

9. The set of strings generated by a linear grammar is a linear language.

10. In a linear grammar in the chain during the inference process there will

be no extra nonterminal and If β = ε, then it will be right-linear, and If α = ε, then

it will be left linear

11. A right-linear grammar G = <N, T, P, S> is called regular, If the initial

nonterminal S does not occur in the right-hand side of any rule, that is, each of

its rules, except S→ε P, has the form either A → aB , or A → a, where A, B

N, a T.

60

12. The set of strings generated by a regular grammar is a regular language;

it is equivalent to the regular set defined in I.3.3.

It is now possible to establish the properties of these grammars and

languages using the following theorems:

Theorem 7.2.1. Every right-linear grammar is equivalent to some right-

linear grammar in normal form.

Theorem 7.2.2. If a right-linear language does not contain an empty word,

then it is generated by some right-linear grammar in normal form without ε-rules.

Theorem 7.2.3. Every right-linear grammar is equivalent to some regular

grammar.

Theorem 7.2.4. Each linear grammar is equivalent to some linear grammar

in normal form.

Theorem 7.2.5. If a linear language does not contain an empty word, then it

is generated by some linear grammar in normal form without ε-rules.

Theorem 7.2.6. The language L is linear if and only if the language L \ {ε}

is linear.

Theorem 7.2.7. Let L be a linear language over the alphabet T. Then there is

a positive integer k such that for any chain ∈L of length at least k one can

choose chains α, β, γ, δ, τ∈T * for which αβγτ = , β≠ε (that is, β ≠ ε or

≠ε), |αβ |+|τ |k and αβ iγ iτ∈L for al l i∈N.

In this grammar, a right-linear language is generated

using inference rules

Examples 6.2.1.

1. The grammar is set G = <N, Т, P, S>, где N ={S, A}, Т = {a, b}, Р =

{S→aA, A→aA, A→b}. In this grammar, a left-linear language is generated

L(G) ⇌ {anb : n=1,2,...} using inference rules S⇒aA⇒aaA⇒aaaA

⇒...⇒a...aaab.

2. The grammar is set G = <N, Т, P, S>, где N={S, A}, Т = {a, b}, P =

{S→Aa, A→Aa, A→b}. In this grammar, a right-linear language is generated к

L(G) ⇌ {ban : n=1,2,...} using inference rules S⇒Aa⇒Aaa⇒Aaaa

⇒...⇒baaa...а.

61

3. Consider a right-linear (left-linear) language {а2n-1}, consisting of chains

of the form a, aaa, aaaaa, It is generated by a right-linear (left-linear)

grammar G = <N, T, P, S>, consisting of the set T={a}, N={S} and

Р={S→a, S→aaS} (Р={S→a, S→Saa}). By the look of the rules, you can

see that the specified language will be a right-linear (left-linear) language.

4. Consider the language L={ambmanbn: m≥0, n≥0} over the alphabet {a,b}.

The assertion of Theorem 7.4.7 does not hold for any natural number k.

Consequently, the language L is not linear.

5. The language {ω∊{a,b}*: |ω|a=2, |ω|b=2} is generated by a linear

grammar. The given language does not contain an empty string, in any string the

number of occurrences and a and b must be 2. Therefore, it is generated by a

right-linear grammar

Tasks 6.2.1.

1. Find Right Linear Grammar becoming a Language {τ∈{a,b}*:

|τ|a ≥ 2, |τ|b≥ 2}.

2. Find Right Linear Grammar equivalent grammar S→E, S→bE, S→caE,

E→a, E→bS.

3. Find Right Linear Grammar in normal form without ε-rules, generating

the language {akbmcn: k≥0, m≥1, n≥0}.

4. Find Right Linear Grammar in normal form without ε-rules, generating

the language {a,b}* - ({an: n≥0} {{akbmcn: k≥0, m≥1, n≥0} bn: n≥0}.

5. Find a linear grammar in normal form without ε-rules that generates a

language {anbncm: n≥1, m≥1}.

6. Describe the language affected by the following rules:

S→0A|1S|ε, A→0B|1A, B→0S|1B

7. Describe the language affected by grammar:

T = {a, b, d}, N = {A,B, D}, S = A,

P={A→aB,B→ aB, B→ b, B→bD, D→d, D→dD, A→aD, A→a}

Questions 6.2.1.

1. Are there languages L1 and L2 such that L1 is right-linear and L2 is left-

linear, and L1∪L2 is not linear language?

62

2. Are there languages L1 and L2 such that L1 is right-linear and L2 is left-

linear, and L1∩L2 is linear language?

3. Is there a right-linear grammar G such that the language L(G)R is not

generated by any right-linear grammar that has as many rules as the grammar G?

4. Is there a right-linear grammar G such that the language L(G)R is not

generated by any right-linear grammar with n + 1 rules (where n is the number

of rules in G)?

5. Is there a right-linear grammar G with three nonterminals such that the

language L(G)R is not generated by any right-linear grammar with three

nonterminals?

6. What type of grammar are the following rules?

S→0A|1S|ε, A→0B|1A, B→0S|1B

7. Do the following rules apply to right-linear grammar?

S→AB, A→Aa|bB, B→a|Sb

Tests 6.2.1.

1. What grammar is a regular grammar?

A) right-linear;

B) left-linear;

C) context-free;

D) recursive;

E) context sensitive.

2. What will be the language { anb, n≥1} generated by a grammar of the

form N ={S, A}, Т = {a, b}, Р = {S→aA, A→aA, A→b}?

A) right-linear language;

B) left-linear language;

C) context-free language;

D) context-sensitive language;

E) recursive language.

3. What will be the language generated by the grammar of the form:

G = <{S}, {a, b}, S, P> and S → abS a?

A) regular language;

63

B) left-linear language;

C) context-free language;

D) context-sensitive language;

E) recursive language.

4. What grammar is G = <{S, A, B}, {a, b}, S, P>, If has the following

rules: S → A, A→ aBε, B→ Ab?

A) linear;

B) regular;

C) context-free;

D) context sensitive;

E) recursive.

5. What will be the language T * in the alphabet T = {t1, t2,…, tn}, If it

is generated by the grammar S→ε, S→ t1S, S→ t2S, ..., S→ tnS?

A) right-linear language;

B) left-linear language;

C) context-free language;

D) context-sensitive language;

E) recursive language.

64

6.3. Context-free grammars

This part deals with context-free grammars, discusses the algorithmic

problems of context-free languages, provides Examples, gives Tasks, formulates

Questions and Tests. For the preparation of teaching materials, sources were

used [1-9,11-13,15-22,24,25-32].

Recall that context-free grammars are grammars in which all inference rules

are of the form A → α, where A∊N , α∊(T∪N)* , i.e. nonterminal A is replaced

by the string α in the set of terminals and nonterminals regardless of the context

in which A.

Context-free grammars (CFGs) occupy an important place in language

theory and serve to Tasks the syntactic structure of the generated string through

the sequence of application of inference rules.

Definition 6.3.1. The languages generated by context-free grammars are

called context-free languages.

Examples 6.3.1. Let be G1 = <T, N, P, S>, where N={S,A,B}, T={a,b}, P =

{S→aB, S→bA, A→aS, A→bAA, B→bS, A→a, B→aBB, B→b}.

The G1 grammar is context-free, since in each of its inference rules the left

side consists of a single nonterminal, and the right side consists of a non-empty

chain of terminals and nonterminals.

In a G1 grammar, the typical conclusions are:

S⇒aB⇒ab, S⇒aB⇒abS⇒abbA⇒abba, S⇒bA⇒ba,

S⇒bA⇒bbAA⇒bbaA⇒bbaa.

The applied inference rules that generate the set of all strings consisting of an

equal number of characters a and b.

A grammar can have several equivalent inferences, which apply the same

rules in the same places, but in a different order. It is difficult to define the notion

of equivalence of two inferences for grammars of an arbitrary form, but in the

CFG conditions one can introduce a convenient graphical representation of a class

of equivalent inferences, called an inference tree.

Definition 6.3.2. The marked ordered tree D is called an inference (parsing)

tree in CFG G (S) = <T, N, P, S>, If the following conditions are satisfied:

(1) The root of the tree D (a vertex that does not include any arcs) is marked

with S;

65

(2) If D1, …, Dk are subtrees dominated by direct descendants of the root of

the tree, and the root of the tree Di is marked with Xi, then the expression

S→Х1Х2. . . Хk is a rule from the set P.

(3) If Xi is a nonterminal, Di consists of a single vertex labeled Xi and If Xi is

a terminal, then Di for any i = 1, 2, ..., k must be an inference tree in the grammar

G(Xi) =<T, N, Р, Xi>

(4) If the root of the tree has a single descendant labeled , then this

descendant forms a tree consisting of a single vertex, and the expression S→ will

be a rule from the set P.

Thus, in the inference tree, each vertex is marked with a symbol from the set

N∪T∪{ε}. In this case, If the internal vertex of the tree is denoted by the symbol

A, and its direct descendants are denoted by the symbols Х1,Х2,... , Хn, then the

expression A→Х1Х2 ... Хn will be the rule of the grammar inference.

The inference tree for CFG G = <T, N, P, S> can be constructed as:

1. The vertices of the tree are marked with symbols from the set T∪N in a

strictly defined order.

2. If a vertex labeled X has at least one subordinate vertex, then X∊N. In this

case, the root of the tree is marked with S∊N.

3. If the vertices X1, X2,…, Xk are directly subordinate to the vertex S, then

the rule S→X1, X2,…, Xk must belong to the set P.

Note that there is a natural ordering of the vertices of an ordered tree, in which

the direct descendants of the vertex are ordered “from left to right”.

Examples 6.3.2. Figure 7.3.1 shows inference trees in the grammar G2 =

G(S) with the rules S→aSbS|bSaS|.

Figure 7.3.1. Examples of grammar output tree.

S

a S b S

b S a S

ε ε

ε

66

Let's number the vertices of the output tree from top to bottom and from left

to right. Suppose that X is a vertex and X1, ..., Xk are its direct descendants.Then

for the vertices Xi and Xj, If i<j, (i=1,2, ..., k, j=1,2, ..., k), then the vertex Xi

and all its descendants are considered to be located to the left of the vertex Xj and

all her descendants.

Let D be an inference tree in CFG G = <T, N, P, S>. Then the following new

concepts can be introduced:

Definitions 6.3.3:

1. The crown of the inference tree is the chain, which is obtained if we write

out the labels of the leaves from left to right;

2. A section of a tree D is a set C of vertices of a tree D such that:

(1) no two vertices from C lie on the same path to D;

(2) no vertex of the tree D can be added to C without violating property (1).

It can be shown that inference trees represent inferences in the sense that for

each inference of the derivable chain α in CFG G one can construct an inference

tree in G with crown α, and vice versa.

Definition 6.3.4. The crown of a section of a tree D is a chain that is obtained

by concatenating from left to right the labels of the vertices that form a certain

section.

Examples 6.3.3. The crown of the inference tree section shown in Figure

7.3.2 is the chain abSaSbS.

Let G = <T, N, P, S> - CFG. Then S⇒*α holds when G contains an

inference tree D with crown α. Let C0,C1,C2,…,Cn be a sequence of sections of

the tree D such that:

(1) Section C0 contains only the root of the tree D;

(2) The section Сi+1 for 0in is obtained from the section Сi by replacing

one nonterminal vertex with its direct descendants;

(3) Сn - crown of tree D. If S⇒*τ = α0,α1,…,αn is the left inference of the

terminal chain τ, then each αi has the form xiAiβi, where xi∊T*, Ai∊N and

βi∊(N∪T)*, 0i<n. In the left inference, each subsequent chain of the inference

αi+1 is obtained by replacing the leftmost nonterminal Ai of the previous chain αi

67

with the right-hand side of some rule. In the right output, the rightmost

nonterminal is replaced.

Definitions 6.3.5:

1. If the section Сi+1 is obtained from Сi by replacing the leftmost

nonterminal vertex in Сi with its direct descendants, then the corresponding

conclusion α0,α1,…,αn is called the left inference of the chain αп from α0 in the

grammar G. The right inference is defined similarly, it is only necessary in in the

previous sentence, read "rightmost" instead of "leftmost". Note that the left (or

right) output is uniquely determined by the inference tree.

2. The string τ is called left derivable in the grammar G, If there is a left

derivation S⇒*τ, and is written as S⇒*
Glτ (or S⇒*

lτ, when it is clear which

grammar G is meant).

3. The string τ is called deducible in the grammar G, If there is a right

deduction S⇒*τ, and it is written S⇒*
Ghτ (or S⇒*

Ghτ). Thus, one step of the left

inference is denoted by ⇒l,, and the step of the right inference is denoted by ⇒h.

If S⇒*τ = α0,α1,…,αn is the left inference of the terminal chain τ, then

each αi has the form xiAiβi, where xi∊T*, Ai∊N and βi∊(N∪T)*, 0i<n. In

the left inference, each subsequent chain of the inference αi+1 is obtained

by replacing the leftmost nonterminal Ai of the previous chain αi with the

right-hand side of some rule. In the right output, the rightmost

nonterminal is replaced.

Examples 6.3.4. Consider CFG Ga with rules

E→E+HH, H→H * FF, F→(E)a

The inference tree shown in Figure 7.3.3 serves as a representation of the

two equivalent pins of a + a chain:

1) left output E⇒E+H⇒H+H⇒F+H⇒a+H⇒a+F⇒a+a,

2) right output E⇒E+H⇒E+F⇒E+a⇒H+a⇒F+a⇒a+a.

E

E +

F

H

a F

H

a

68

Definition 6.3.6. CFG G is called ambiguous, If there is at least one

terminal chain τ∊L(G), which is the crown of two or more different

derivation trees in G. That is, some terminal chain τ τ∊L(G) has two or more

different left (right) inference, otherwise CFG G is called unambiguous.

Examples 6.3.5. CFG Ga from Example 7.3.5 is ambiguous, since there

is a terminal chain a + a has two or more different left (right) outputs:

left terminal E⇒E+H⇒H+H⇒F+H⇒a+H⇒a+F⇒a+a,

right output E⇒E+H⇒E+F⇒E+a⇒H+a⇒F+a⇒a+a.

Definition 6.3.7. Let γ∈T*, δ∈T*, ω∈T* and X∈N. Then the

nonterminal symbol X is called useful in CFG G = <T, N, Р, S>, If it can

participate in the derivation of the form S⇒*γXδ⇒*ω, otherwise it is called

useless

Definition 6.3.8. The symbol X∊N∪T is called unreachable in CFG G

= <T, N, P, S>, If X does not appear in any water derivable chain.

Definition 6.3.9. We call CFG G = <T, N, P, S> a grammar without ε-

rules (or non-shortening), If either

(1) P does not contain ε-rules, or

(2) there is exactly one ε-rule S → ε and S does not occur in the right-

hand sides of the remaining rules from P.

Definitions 6.3.10. Let CFG G = <T, N, P, S> be given. Then:

1. A nonterminal A∈N in G is called a cyclic symbol, If for it there is a

derivation A⇒ζAξ, ζ∈(T∪N)*, ξ∈(T∪N)*.

2. A cyclic symbol is called effective, If A⇒αAβ, where |αAβ|> 1,

otherwise the cyclic symbol is called fictitious.

3. A grammar G is called a cyclic grammar if it contains at least one

cyclic symbol.

4. The grammar G is called a grammar without cycles, If for the

nonterminal A∈N there are no conclusions of the form A⇒+A;

69

5. A grammar G is called a reduced grammar, If it is without loops,

without ε-rules, and without useless symbols.

Grammars with ε-rules or loops are sometimes more difficult to parse

than grammars without ε-rules, since in any practical situation useless

symbols unnecessarily increase the size of the parser. Therefore, for some

parsing algorithms, we will require that the grammars appearing in them be

reduced. Let us prove that this requirement nevertheless allows us to

consider all CF-languages without cycles.

Definition 6.3.11. The A-rule of a KS-grammar is a rule of the form A

→ α (do not confuse the A-rule with the ε-rule, which has the form B → ε).

Examples 6.3.6. Eliminate the rule A → aAA from the grammar G

having two rules A → aAA | b. Applying the lemma, setting α = a and β =

A, we obtain a grammar G' with the rules A→aAAA|abA|b.

Tasks 6.3.

1. Construct the reduced grammar equivalent to a grammar with the

following rules:

S→aABS|bCACd,

A→bAB|cSA|cCC,

B→bAB|cSB,

C→cS |c.

2. Construct the reduced grammar equivalent to a grammar with the

following rules:

S→aAB|E, A→dDA|ε,

B→bE|f,

C→cAB|dSD|a,

D→εA,

Ε→fA|g.

3. Build the given grammar that generates identifiers consisting of letters

and numbers.

4. Build an inference tree for chain 10.1001 in CFG with the rules: S → S0

| S1 | D0 | D1, D → H, H → 0 | 1 | H0 | H1.

5. Build an inference tree for the chain if a then b = a + b + b in CFG with

the rules: S→if B then S|B = E, Ε→B|B+E, B→a|b

70

6. Build a CFG generating language {a2nbmс2k|m=n+k, m>1}, build an

output tree and left-sided output for aabbbcccc.

7. Build the CFG generating the language L= {13n+2 0n : n≥0}, build the

inference tree and left-sided inference for 1111111100.

8. Build in the alphabet T = {a, b} languages L1 and L2, in which the letter

b is repeated n times L1 = {abn : n>= 0}, L2 = {bn a : n >= 1}.

9. Construct a CFG that generates a language that consists of strings that

begin with # and end with!, Between which there is a non-empty string of + and

- signs that does not contain two identical symbols standing side by side.

10. Construct a CFG that generates correct logical expressions using the

conjunction & and the disjunction ∨, which can be connected by the relations:

>, <, =.

Questions 6.3:

1. How is the left (right output) determined in CFG?

2. What type of language L(G)⇌{anbnсn: n>1}?

3. What type of language L= {13n+2 0n: n≥0} ?

4. What is the type of grammar that generates a lot {a∨a*a}?

5. What is the type of grammar that generates a lot {a1a2…anan…a2a1: ai

∊{0,1}, 1 i n}?

6. What will be the left pins and right pins in CFG for this chain

1111111100?

7. Does a non-cyclical CFG generate a final language?

8. Does a cyclic reduced CFG containing at least one effective cyclic symbol

generate an infinite language?

9. Is it possible to transform the rules

A→AA|α, A→AαA|β, A→αA|Aβ|γ

so as to get ambiguous grammar?

10. Is it possible to construct a cyclic reduced grammar to generate a

language L= {a2n bm c2k: m=n+k, m>1}?

11. Is the language context-free {ωωω: ω∊{a, b}*}?

12. Is the language context-free

{γδδω: γ∊{a, b}+, δ∊{a, b}+, ω∊{a, b}+}?

Tests 6.3.

71

1. What language is generated by a grammar in which all inference rules

are of the form A→α , where A∊N , α∊(T∪N)?

A) context-free;

B) left-hand;

C) right-linear;

D) recursive;

E) context sensitive.

2. What symbol is a nonterminal called, If for it there is a derivation

A⇒ζAξ, ζ∈(T∪N)*, ξ∈(T∪N)*?

A) cyclic;

B) acyclic;

C) periodic;

D) unique;

E) ambiguous.

3. What is the name of the chain, If there is a conclusion S⇒*τ, and is

written S⇒*
Ghτ (or S⇒*

Ghτ)?

A) legally withdrawable;

B) left-handed;

C) directly withdrawable;

D) re-removable;

E) not deducible.

4. What grammar is G, if there is at least one terminal chain τ∊L (G),

which is the crown of 2 or more different inference trees in G?

A) ambiguous;

B) unambiguous;

C) undefined;

D) cyclic;

E) What is the name of the character X∊N∪T if it appears in the string?

A) unattainable;

B) achievable;

C) ambiguous;

D) unambiguous;

E) recursive.

72

7. FINITE AUTOMATONS

Lecture objective: explain the concept of universal automaton and finite

automaton.

Lecture plan: study the composition and structure of abstract automaton;

give a formal definition of indeterminate and determinate finite automaton and

of languages recognized by such automatons.

Usually under the term “automaton” we understand a device which, once

turned on, can perform a number of given operations on its own. However, we

deal with an abstract automaton used as a mathematical model of any digital

(discrete) devices in which all signals are quantized in level, and all actions are

quantized in time.

An abstract automaton (hereinafter – automaton) can distinguish a set or

transform a set into another set; it consists of a tape, a head unit and a controller

device; it may also have working memory.

Tape – a linear sequence of cells, each of which can store only one symbol

from a certain finite input (output) alphabet.

The tape is infinite, but at each given moment only a finite number of cells

is occupied. Special markers denoting the beginning and end of the tape may

occupy the boundary regions to the left and right of the occupied cell area. The

marker may be just at one end of the tape or be absent altogether.

Input (output) head unit – a device which can view only one tape cell at any

given moment of time. The head unit can shift one cell to the left or to the right,

or remain immobile. It is generally assumed that the head unit is read-only, i.e.

during the work of the automaton the symbols on the tape do not change. But it

is also possible to consider automatons whose head unit both reads and writes.

Thus, the head unit may perform both reading and writing operations.

Working memory – an auxiliary storage for reading and writing data.

Working memory may be organized as a dynamic data structure (queue or stack).

Controlling unit – a device which governs the automaton’s behavior

and has a finite internal memory for storing a finite number of states. It

governs the automaton’s behavior by means of a function (relation) which

describes how the states change depending on the current state and current

input symbol read by the head unit, and the current information extracted

73

from the working memory if available. The controlling unit also

determines the direction of the shift of the head unit and the information to

be entered in the working memory.

The automaton is determined by the input of a finite set of states of the

controlling unit, finite set of accepted input symbols, the source state and the set

of final states, as well as the state transition function which, by the current state

and current input symbol being its arguments, indicates all possible next states

or values of this function. The work of the automaton may be conveniently

described by means of its configuration. The automaton’s configuration

includes:

- controlling unit’s state;

- contents of the input tape and the position of the input head unit;

- contents of the working memory and the position of the working head unit

if available;

- contents of the output tape if available.

The automaton’s configuration can be initial, current and final.

In its initial configuration the internal memory contains a previously entered

symbol denoting the initial state of the controlling unit; the controlling unit is in

the initial state; the head unit reads the leftmost input symbol on the tape; if

working memory is available, it contains preconfigured initial contents.

In its current configuration the internal memory contains previously entered

symbols of current states of the controlling unit; the controlling unit is in one of

its current states; the head unit reads neither the leftmost nor the rightmost

current input symbol; if working memory is available it has preconfigured

current contents.

In its final configuration the internal memory contains previously entered

symbols denoting the final states of the controlling unit; the controlling unit is in

one of its final states; the head unit views the right end marker or, if the marker

is not available, it leaves the input tape; if working memory is available then it

satisfies certain conditions.

Prior to its inception the automaton is its initial configuration, i.e. the symbol

denoting the initial state of the controlling unit is entered in the internal memory,

the input chain is entered in the input tape; if working memory is available,

corresponding data is entered in the memory.

74

The automaton uses a program consisting of a finite sequence of steps. Each

step consists of the current (initial) and next (final) configuration.

At the step’s beginning the memory reads the symbol of the current

state of the controlling unit, the input tape reads the current input symbol;

the information in the working memory, if available, is also read. Then,

depending on the current state and read information the automaton’s

actions are determined:

(1) Input head unit moves to the right, left or remains in place;

(2) A new symbol is entered in the current cell of the input tape or the

previous symbol is not changed;

(3) Some information, if available, is entered in the working memory;

(4) A symbol is entered in the output tape, if the tape is available.

(5) The controlling unit moves into another state and the number (symbol)

of this state is entered in the internal memory.

As a result, during one step of the automaton the input head unit can move

one cell to the left, right or remain in its place. As the automaton functions, the

contents of the input tape cells do not change, but the contents of the output tape

cells and the working tape cells can.

If the automaton views the input chain and executes a sequence of steps

starting from the initial configuration and finishing in a final configuration, then

it recognizes the chain.

A language recognized by the automaton is a set of chains that the

automaton recognizes.

Examples 7.1:

1. A public pay telephone may serve as an example of automaton: it

recognizes the input of a coin and enters the dial number state.

2. An ATM is an automaton: it recognizes an inserted card and enters the

pin-code input state.

3. A subway ticket gate is an automaton: it recognizes a token and enters the

open gate state.

Finite automatons recognize regular languages. First, formal

definitions of indeterminate and determinate finite automatons are given,

75

then the languages they recognize are described, followed by the proof of

their equivalency.

Finite automatons are among the simplest and most widespread

recognizing machines. A finite automaton contains output tape, internal

memory, external memory, head unit and controlling unit.

Finite automaton may be indeterminate or determinate, but its head unit

must be one-way only and move only to the right. Their formal definitions

are as follows:

Definition 7.1. Indeterminate finite automaton (IFA) is determined by

the seven element set M = <Q,Т,I,F,⊢,⊣,Δ> where:

Q – finite set of states of the controlling unit;

T– finite set of input symbols, Q∩T=Ø;

I – set of initial states of the controlling unit, I⊆Q;

F– set of final states of the controlling unit indicating that the input chain is

recognized,F⊆Q;

⊢,⊣– tape start and end markers ⊢,⊣T;

Δ–set of relations of transition Δ⊆QT*(Q), (Q) – set of all subsets

of the set Q.

The determined finite automaton (DFA) is a special case of IFA.

Definition 7.2. Finite automaton M = <Q,Т,I,F,⊢,⊣,Δ> is called

determined, if:

(1) The set of initial states I contains exactly one element;

(2) For each transition <q, τ, p>∈Δ |τ|=1 holds true;

(3) For each state q∈Q and for each symbol t∈T there exists no more than

one state p∈Q with an attribute <q, t, p>∈Δ;

(4) Other symbols are identical to IFA.

Notes 7.1:

1. Sometimes instead of the set of relations of transition Δ taking logical

values “true” or “false”, the function of transition δ is used which takes value as

a symbol of the set Q, where δ: QT*→ (Q) − in the case of IFA and δ:

QT*→ Q− in the case of DFA. From the function δ it is easy to arrive at the

relation Δ by assuming

Δ = {<q, τ, (q, τ)>: qQ, τT*}

76

2. Henceforth we shall use both relations of transition and functions of

transition depending on the context without making particular mention. For any

qQ,pQ и τT* we may use:

1) For relations of transition: <q,τ,{p}>−for IFA, <q,τ,p>−for DFA;

2) For function of transition: (q,τ)={р}−for IFA,(q,τ)=p − for DFA.

3. If we want to use the function of transition instead of the relation of

transition, then in the formal definition KA it is necessary to substitute the

symbol Δ with δ, and leave other symbols unchanged at their previous values,

i.e. we obtain M = <Q, T, I, F, ⊢,⊣,δ>.

The KA transition may be illustrated as a diagram, in which each state

is denoted with a circle and transition with an arrow. An arrow from the

state qQ to the state pQ denoted with a chain τT* indicates that <q, τ, p>

(or (q, τ) = p) is a transition within the given IFA. Each initial state may be

recognized by a short arrow leading to it. Each final state is indicated with a

double circle.

8. Are the following grammars equivalent?

S→ab, S→aKSb, K→bSb, KS→b, K→ε

and

S→aAb, A→ε, A→b, A→S, A→bSbS

9. Are the following grammars equivalent?

S→aD, D→bba, D→baDa, D →aDaDa

and

S→aaE, S→abD, E→bDD, D→aaEa,D→abDa,D→ba?

10. What class does the following grammar belong to?

S→abba, S→baa?

11. What class does the following grammar belong to?

S→AD, A→aA, A→ε, D→bDc, D→ε

12. Is the grammar with the rules

S→AB, A→a|Aa,A→a|Aa

equivalent to the grammar with the rules

S→AS|SB|AB, A→a, B→b?

13. Is the grammar with the rules

S→cE, E→ddc,E→dcEc,E→cEcEc

equivalent to the grammar with the rules

77

S→ccA, S→cdB,A→dBB,B→ccAc,B→cdBc,B→dc?

How should one describe in unambiguous grammar a language generated

by the ambiguous grammar Ε→E+E|E*E|(E)|i?

Examples 7.2:

1. For КА M1 with one transition and parameters:

Q={q,p}; T*={τ}, I={q}, F={p}, (q,τ)=p the diagram is shown in the figure

7.1.

2. Let КА M2 have the following parameters: Q={1,2},

T={a,b}, I ={1}, F ={2}, Δ={<1, aaa, 1>, <1, ab, 2>, <1, b, 2>, <2, ε,

1>}. As we can see, figure 7.2 shows a diagram of transitions of IFA M2, in

which regular expressions aaa, ab, b,ε are used as arc markings. Such conception

makes construction of the diagram easier and renders it compact and intuitive.

1.

2.

КА M3 for recognition of identifiers consisting only of letters and

numbers and starting with a letter will have the following parameters:

q p
τ

Figure Diagram .

 2

aaa

Figure 8.2. Diagram КА with regular expressions

ab

b

ε

Figure 8.3. Diagram КА for identifier.

 2

b

b

d

78

Q={1,2}, T={b,d}, I={1}, F={2}, (1,b)=2,(2,b)=2,(2,d)=2, where b – letter,

d – number. The diagram КА M3 is shown in the figure 7.3.

Note 7.3.If a diagram contains several transitions with the same starting

and ending point, they are called parallel transitions. Usually parallel

transitions are indicated in a diagram with a single arrow. The markings of

transitions are separated with commas. In figure 7.4 a diagram КА M4 is

shown with parallel transitions for chains ab, b.

The КА transitions may be represented as functions by means of a table

or commands.

Convention 7.1.Among all KA states the initial state qs and final state qf

stand out; here s and f are understood not as numeral variables but as mnemonic

marks of start (start) and end (final).

Examples 7.3. In the table 7.1 the function of transition δ КА M5 is

shown determined by the sets Q = {qs, q1, q2, q3} and T= {t1, t 2, t 3}.

Table 7.1. Values of the function of transition  КА M5.

 Input

t1 t2 t3

State

qs q2 q2 q2

q1 q3 qs qs

q2 q2 q2 q2

q3 q3 q2 qs

The function of transition in the table 7.1 may be represented as

commands in the following way:

(qs, t1) = q2, (qs, t2) = q2,(qs, t3) = q2,

(q1, t1) = q3, (q1, t2) = qs,(q1, t3) = qs,

Figure 7.4. Diagram .

 2

aaa

ab,b

ε

79

(q2, t1) = q2, (q2, t2) = q2,(q2, t3) = q2,

(q3, t1) = q3, (q3, t2) = q2,(q3, t3) = qs.

Let КА M be given with initial state qsQ,current state qQ, final state

qfQ and unused current input chain τT*. Then the following description

may be given.

Definitions 7.3:

1. If the head unit views the leftmost symbol of the input chain, then the pair

(qs,τ)QT* is called initial configuration КА;

2. If the head unit views the current symbol of the input chain τ, then the

pair (q,τ)QT* is called current configuration КА;

3. If the input chain τ has been read completely, then the pair (qf,

ε)QT* is called final configuration КА;

Note 7.4. By its contents the configuration is an “instantaneous description”

of КА. Assuming that the initial chain whose belonging to the language under

discussion is to be verified is in the tape, then in the configuration (q,τ) the chain

τ is the part of the initial chain which remains in the tape.

The step of КА is determined by the state of the controlling unit and the input

symbol being viewed at that moment. The step itself consists in the change of

state of the controlling unit and the shift of the head unit one cell to the right.

The Step КА M is yielded by the binary relation ╞M, determined over

its configurations in the set QT*. If the automaton is known, then the letter

M in the relation ╞M may be omitted.

Let tT be the leftmost symbol of the input chain still not read and both

for qQ and pQ <q, t, p>Δ holds true; then for the chains τT* the relation

(q, tτ)╞ (p, τ) is true which determines the step of the automaton; this means

that the automaton is in the state q and the state unit is viewing the symbol

t in the input tape; then КА M moves into the state p and the head unit

moves one cell to the right. If τ= ε, then the input chain is considered to

have been read completely.

Examples 7.4. Let τ = abba. Then in the diagram КА M2 in the figure 7.3

there is a step determined as relation (1, abba)╞ (2, ba).

Definition 7.4.╞k is the k–th degree of relation╞, if a chain of k+1

configurations exist

(q0,τ0), (q1,τ1), (q2,τ2),…, (qk–1,τk–1), (qk,τk)

80

so that for any i (1 i k) the relation is true

(qi–1,τi–1)╞ (qi,τi), where q0=qs, τ0=τ, qk= qf,τk=ε.

If for any i1 or i0 (q0,τ)╞i(qi,ε) holds true, then we may write

(q0,τ)╞+(qi,ε) or (q0,τ)╞*(qi,ε) correspondingly. Here by╞+ is denoted the

transitive closure of relation ╞, and by ╞* – the reflexive and transitive closure

of relation.

Definition 7.5. Automaton M recognizes input chain τ, if the relation (qs,τ)

╞* (qf,ε) holds true.

Examples 7.5. Let τ = aaaab. Then in КА M2 in the figure 7.3 following

relations (1, aaaab)╞(1, ab) and (1, ab)╞ (2, ε) hold true.

Definition 7.6. If the language L consists only of input chains recognized

by automaton M, then this language is recognized by automaton M and is

denoted as L(M), i.e.

L(M)⇌{τ: τT* & (qs,τ)╞*(qf,ε)}.

Lemma 7.1. If (q1, x)╞* (q2,ε) and (q2, y)╞* (q3,ε) is true, then (q1, xy)╞*

(q3,ε) is true.

Proof. For this it is necessary to perform induction by a number of steps in

the program of work КА, leading from configuration (q1,x) to configuration

(q2,ε).

Examples 7.6. Let for M6=<{qs,q1,qf},{0,1},qs,{qf},⊢,⊣,>

there exist the following transition relations:

<qs,0,{q1}>,<qs,1,{qs}>,<q1,0,{qf}>,<q1,1,{qs}>,<qf,0,{qf}>,<qf,1,{qf}

>

КА M6 recognizes all chains of zeroes and ones in which there are two

zeroes in a row. The conditions may be interpreted in the following way:

qs–initial condition indicates that “two zeroes in a row have not been

detected and the initial symbol is a zero”;

q1–state indicates that “two zeroes in a row have not been detected and the

initial symbol is a zero”

qf– final condition shows that “two zeroes in a row have been detected”.

It may be noted that КА M6, once entering the state qf, remains in that

state.

81

For the initial chain 01001 the only possible chain of configurations

starting from configuration (q0, 01001) will be (qs,01001)╞ (q1,1001)╞

(qs,001)╞ (q1,01)╞ (qf,1)╞ (qf, ε).

Thus, 01001L(M6).

The diagram of this automaton is shown in the figure 7.5.

Definitions 7.7:

1. Path КА is a tuple <q0, r1, q1, r2,…, qn>, where n≥0 and ri = <qi–1, τi,

qi>∈Δ for each i, 1≤i≤n. Here q0 – beginning of the path,qn – end of the path,

τ1...τn – mark of the path, n – length of the path.

2. A path is called successful if its beginning belongs to I and its end

belongs to F.

Note 7.5. For any state q∈Q there exists a path<q>. Its mark ε, beginning

and end coincide.

Examples 7.7. Let us consider КА M2in the figure 7.3 Let τ = baaab.

Then the path <1,<1,b,2>,2,<2,ε,1>,1,<1,aaa,1>,1,<1,b,2>,2> is successful.

Its mark is baaab, and its length is 4, i.e.: q0=1, q1=2, q2=1, q3=1, q4=2;

r1=<1,b,2>, r2=<2,ε,1>, r3=<1,aaa,1>, r4=<1,b,2>;

τ1=b, τ2=ε, τ3= aaa, τ4= b.

Using the concept “path” it is possible to give alternative definitions to

already introduced concepts of recognized chain and language.

Definitions 7.8:

1. Chain τT* is recognized КА M, if it is the mark of a successful path.

2. КА M recognizes a language L(M), if it consists only of marks of all

successful paths.

Note 7.6. If I⋂F≠Ø, then the language recognized by КА M = <Q, Т,⊢,⊣,I,

F,Δ> contains an empty chain ε.

1

0

 q1 qf
0

0,1

0,1

5. Diagram КА .

82

Examples 7.8. If КА M7= <Q, Т,⊢,⊣,I, F,Δ> is given as Q = {q1,q2}, Т =

{a,b}, I = {q1}, F = {q1,q2}, Δ = {<q1,a,q2>, <q2,b,q1>}, then it is determined

and recognizes the following language:

L(M7) = {(ab)n: n≥0} ∪ {(ab)na: n≥0}.

The diagram of this automaton is shown in the figure 7.6.

Definition 7.9. DFA M = <Q, Т,⊢,⊣,I, F,Δ>, is called full, if for any state

q∈Q and for any symbol t∈T there exists such state p∈Q that <q, t, p>∈Δ, i.e.

(q, t) = р.

Examples 7.9. The diagram of full automaton M8 with the following

parameters Δ = {<1,a,2>, <1,b,3>, <2,a,3>, <2,b,1>, <3,a,3>, <3,b,3>}, Q =

{1,2,3},T = {a,b}, qs = {1}, F ={1,2} is shown in the figure 7.7.

Tasks 8:

1. Find a КА recognizing language {αβ: α∈{a,b}*, β∈{a,b}*}.

2. Find a KA recognizing language {a,b}* \ ({an: n≥0}∪{ bn: n≥0}).

3. Find a KA recognizing language {aξb: ξ∈{a,b}*∪{bξa: ξ∈{a,b}*}.

4. Find a KA recognizing language {τ∈{a,b}*: |τ|a ≥3}.

5. Find a KA recognizing language {ambnambn: m,n1}.

6. List all configurations (q, τ), satisfying the condition (1, abaacdcc) ╞* (q,

τ), in КА M9 shown in the figure 7.8.

q2

a

q1

Figure 6. Diagram КА M7.

b

Рисунок 7. Диаграмма КА M8

 2

a

1

b

a

b

b

a

3

a

c a

b

c

d

83

7. Find the step of the automaton if it is determined as

М = <{ q0,q1,q2,qf}, {a, b, c}, , q0, {qf}>,

where (q0,a)={ q1,q2}, (q1,a)={q1}, (q1,b)={qf}, (q2,c)={qf},

L(М) = {ac}∪{anb: n1}.

8. Find the full determined finite automaton for

language (a∨b)*(aab∨abaa∨abb)(a∨b)*.

9. Find the full determined finite automaton for

language (b∨c)((ab)*c∨(ba)*)*.

10. Find the full determined finite automaton for

language (b∨c)*((a∨b)*c(b∨a)*)*.

Questions 7:

1. Is КА M10 shown in the figure рисунке 7.9. determined?

2. Do КА states q1, q2 and chains α,β,δ exist such that the relations (q1, αβ)╞*

(q2, β) и ¬ (q1, αδ)╞* (q2, δ) hold true?

3. How are |Q|, |T|, |Δ|,|τ| and the number of configurations attainable from

(q,τ) related in the sense of ╞*?

Figure 9. Diagram КА M10.

4

b

a

a

b

a

b

b

a

84

4. What automaton can recognize the language generated by the regular

expression (abab)∨(aba)*?

5. What contains the input tape?

6. What determines the direction of the shift of the head unit?

7. What does the automaton configuration consist of?

8. What types of configurations exist?

9. What does an automaton – recognized language consist of?

10. Is the determined finite automaton M11 with alphabet Т = {a, b, c}

shown in the figure 7.10 full?

11. Is the determined finite automaton M12 with alphabet Т = {a, b}

shown in the figure 7.11. full?

12. What does the graph of transition of finite automaton satisfying a given

grammar look like?

   

+−→

+−−−→

++→

−+=

ABBCC

AABB

AAP

CPCBAG

||*|*|*

|||

|:

.,,,,,*,,

Figure 7.11Diagram КА M12.

 2

a

1

b

a

b

b

a

Figure 10. Diagram КА M11.

3

a

с с

b

3

a a

b b

с

85

Tests 7:

1. Finite automatons move to a state in accordance with:

A) transition table in the automaton’s memory;

B) given task;

C) figures;

D) directions;

E) contents.

2. Which automaton is called determined?

A) if for any acceptable configuration of the identifier arising at one of the

steps of its operation there exist two configurations in one of which the identifier

will move in the following step;

B) if for any acceptable configuration of the identifier arising at one of the

steps of its operation there exists a uniquely possible configuration in which the

identifier will move in the following step;

C) if the identifier has an acceptable configuration for which there exists a

finite set of configurations possible at the next step of operation;

D) if the identifier allows reading input symbols in one direction only (“from

the left to the right”);

E) if the identifier allows that the reading device move in both directions

with respect to the chain of input symbols – both forwards from the beginning

of the tape to its end and backwards going back to previously read symbols.

3.Finite automaton is a five – element set M= <Q, T, δ, q0, F>, where Q is

A) a finite set of acceptable input symbols;

B) a finite set of states;

C) transition function;

D) initial state;

E) final state.

Table 2. Examples of real numbers with floating point.

№ Example Mantissa Order Value

6. 310*.12− –12 3 –12000

86

7. 210*3.0 +
 0.3 2 30

8. 210*254 −
 254 –2 2.54

9. 110*5.1 1.5 1 15

10. 210*17.2+ 2.17 +2 217

One and the same real number with floating point can be represented in

different ways. For example, the same number of 3.14 may be recorded:

===== −− 21012 10*.0314.010*314.010*14.310*4.3110*.314

To have a single entry for the submission of real number with floating-point

we need to normalize it to the following condition:

11 − Mq ,

where │M│- the absolute value.

For example, real numberw with floating point in a normalized form are as

follows:
410*1364.0 and

710*617.0 −
.

In order to simplify the arithmetic operations in the computer special codes

to represent numbers are used. We consider direct code, inverse code and

additional code of numbers.

Direct code of binary number is itself a binary number, and a sign of the

binary number is written by dinary digit: "-" sign - the number 1, "+" sign - digit

0. For example, a negative binary number 10112 in direct code is written as

1.1011.

Representation of numbers in a computer, compared with forms well

known since high school, has two important differences:

- numbers are recorded in the binary number system;

- for recording and processing of numbers a finite number of places are

assigned (in the ordinary - non-computer arithmetic has no limit).

Addition and multiplication of binary numbers is done according to the table

of addition and multiplication:

Addition of binary numbers Multification of binary

numbers

0 + 0= 0 0 · 0 = 0

87

0 +1 = 1

1 + 0 = 1

1 + 1 = 10

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

Arithmetic device in computer performs an action not with the binary

numbers according to the rules of binary arithmetic, but with their binary codes

according to the rules of arithmetic binary codes.

Differences between the rules of arithmetic of binary codes from ordinary

arithmetic is in limit of discharge grid. In other words, for the record of number

in the computer memory a fixed number of places is allocated. Computer

memory has byte structure, however, the size of one addressed cell is typically

several bytes: 2, 4, 8 bytes.

All the information on the computer is represented in binary code. From the

whole set of codes, we consider the direct, inverse and additional codes.

To record integer binary number in the direct code binary numbers are

complemented by sign pool, which is assumed to be equal to "0" for positive

numbers and "1" - for negative. In manual recording of numbers with sign, the

sign pool, for convenience, is separated from significant pools by point.

For example, the decimal number (+12) in direct binary code is written as

(0.1100), and a decimal number - so (-12) - (1.1100).

Direct code is used for storage of numbers in the computer memory, as

well as for operations of multiplication and division.

Other forms of presenting numbers with sign are the inverse and additional

codes. These codes allow you to replace the subtraction of integers with their

addition, based on the principle: a - b = a + (-b).

Positive numbers recorded in direct, reverse and additional codes are the

same.

Thus, positive decimal number 12 in direct, inverse and additional binary

codes can be written as follows: (0.1100).

To convert a negative number from direct code into reverse, one shoud be

saved in sign pool and numbers of significant pools should be reversed, i. e.

"1" is replaced by "0" and "0" to "1".

Additional code of negative number is obtained from the inverse code of

number by adding "1" to the least significant digit of this number.

88

Rules of adding in additional code:

1. Addition is made accroding to the rules of addition of binary numbers,

including the sign pool.

2. If as a result of adding the transfer occurs (overflow) from sign pool, the

transfer is ignored (discarded).

3. If the sign of addition does not coincide with the signs of additives (this

situation can arise only when the signs are the same), there is an overflow

of digit grid of computer and the result should be declared invalid.

Addition in reverse binary code differs from adding in additional code on

only one rule: if as the result of the addition there was the transfer from sign

pool, i.e., overflow has occurred, it is necessary to add "1" to the least significant

digit.

Example 2.1.

6. +5 - positive integer 5

7. 3.14 - positive real number with fixed-point, the integer part 3, and the

fractional part 14.

8. 0.2 - positive real number with fixed-point, the integer part 0 and

fractional part 2.

9. -1.001 - negative real number with fixed-point, the integer part 1 and the

fractional part of 001.

10. 0.0 - positive real number, the integer part 0 and the fractional part

0.

Example 2.2. Write a decimal number (-12) in direct, inverse, and the

additional binary codes in six-digit cell:

1.01100 - direct code;

1.10011 - reverse code;

1.10100 - additional code.

In this example, one place is assigned to the sign of number, five places to

the number itself, to the point in the discharge grid no place stands out. The

number itself is shifted to the right edge, and the excess discharge (in direct code)

recorded as "0". Then direct code is inverted to transfer to reverse.

Transfer of numbers from reverse (additional) code into direct code

performed on the same rules as to reverse (additional) code from direct.

89

Example 2.3. To perform this operation: 15 - 7 in direct, reverse, and

additional code:

 Decimal

number

Direct code Reverse code Additional code

Data 15

–

7

0.1111

 –

1.0111

0.1111

 +

 1.1000

0.1111

 +

1.1001

Intermediate result 8 10.0111

+

 1

1 0.1000

Final result

8 0.1000 0.1000

Example 2.4. To perform this operation: 7 – 15 in direct, reverse, and

additional code:

 Decimal

number

Direct code Reverse code Additional code

Data –15

+7

0.1111

1.0111

1.0000

+

0.0111

1.0001

+

0.0111

Intermediate result –8 1.0111

1.1000

Final result

–8 1.1000 1.0111

+

 1

1.1000

Exercise 2.5

1. Determine the real numbers with floating point:

6) 40,23;

7) –5;

8) 3.3*10–2;

90

9) 5.1+6i;

10) 0.14+7i.

2. Move a specified number from one number system to another:

1) 10000001 from binary to decimal system.

2) 129 from decimal to octal system.

3) 1952 from decimal to hexadecimal system.

3. Arrange the arithmetic operations so that it is true the following

equation in the binary system: 1100 ? 11 ? 100=100000.

Questions 2.

1. What is a number system?

2. For what groups real numbers are divided?

3. Can the same numeric value be represented in the different number systems?

4. What are the types of numeric values?

5. For what groups real numbers are divided?

Test 2.

1. In what system data is coded in ANSI?

A) in binary system

B) in ternary system

C) in octal system

D) in decimal system

E) in hexadecimal system

2. In what system data is coded in in Unicode?

A) in hexadecimal system

B) in ternary system

C) in octal system

D) in decimal system

E) in binary system

3. How many bytes are used for encoding in Unicode?

A) 2

B) 1

C) 3

D) 5

91

E) 4

4. What is the number system?

A) A recording method using the numbers and a set of rules.

B) Possibility to record values of the numbers in a given range.

C) Each sequence of numbers identifies only one numerical value.

D) Easiness of performing of operations.

E) Values of numbers do not depend on their position in the record of

number.

5. Which number system is the smallest?

A) binary.

B) octal.

C) hexadecimal.

D) Ternary.

E) Decimal.

92

3. Bases of mathematical logic

Statements and logic connectives. The logic form of the statement: the

subject, a predicate, connectives, premises. Conclusions: deductive, inductive.

Concepts of the proof. Logic connectives: disjunction, conjunction, negation,

implication, equivalence. Truth tables. Logic functions. Concepts of a

tautology and the

Statements

The content of any science make statements (propositions) about the

objects of her subject domain. Propositional logic is abstracted from the

specific content of the statements and studies the structure of complex

sentences and their logical connections.

Statement is the declarative proposition, wich can be true or false.

Examples of statements: "Snow is white", "2> 3", "If there is rain, then I take

an umbrella", etc.

Statements can be linked to each other by means of logical connections,

"not", "and", "or", "implication", "equivalent."

Mathematical logic, we will study with the help of mathematical methods

in a some meta-language, which is different from the subject language of the

studied logic. Subject language of propositional logic consists of the alphabet

and formulas:

Alphabet:

(1) P, Q, R, ... - variables for simple statements (propositional letters);

(2) , &, , →,  - symbols on the statements of operations (logical

ligament);

(3) (,) - auxiliary characters (braces).

The formulas or complex statements:

(1) P, Q, R, ... - propositional letters - elementary formula (atoms);

(2) if A, B - formula, А, А&В, АВ, А→В, А В - formula.

In the definition of the formulas used metaletters A, ie characters that do not

belong subject language.

Examples of formulas: P, (P&Q), (R→ (P  R)).

Subformulas - is part of the formula, is the formula itself.

 Set Language, we have built a formal system. Now imagine it as

meaningful propositional algebra, for this we give the meaning symbols of

alphabet and formulas. Propositional letters, and logical operations are defined

in the field of two elements {T, F}, T - True, F - False:

93

P Q PQ PQ P P→Q PQ

T T T T F T T

T F F T F F F

F T F T T T F

F F F F

T T T

The value of the formula E [P1, ... , Pn] at this interpretation of its constituent

propositional letters

 : {P1, ... , Pn} {T,F} we define by induction on the structure of the

formula:

E = P : E[] =  (P);

E = A : E[] = A[];

E = A&B : E[] = (A&B)[] = A[] & B[];

E = AB : E[] = (AB)[] = A[]  B[];

If in the formula the operation  is used only one, the formula is called the

formula with negation.

Tautology (universally valid formula, logical law) - a formula, true for all

interpretations of its constituent propositional letters, in other words, - the

column of values, which contains only true values (denoted by the symbol ╞)

Basic tautology.

 1а. ╞A→(B→A)

 1б. ╞(A→B)→((A→(B→C))→(A→C))

 2. ╞A→(B→A&B)

 3а. ╞A&B→A

 3б. ╞A&B→B

 4а. ╞A→AB

 4б. ╞B→AB

 5. ╞(A→C)→((B→C)→(AB→C))

 6. ╞(A→C)→((A→C)→ A)

94

 7. ╞A→A

 8. ╞(A→B)→((B→A)→(AB))

 9а. ╞(AB)→(A→B)

 9б. ╞(AB)→(B→A)

 10. ╞(A→(A→C)

Logic functions called n-place operation on the set {0,1}.

Alphabet:

(1) x,y,...,x1,x2,... - individual variables;

(2) f,g,...,f1,f2,... - functional symbols.

Term:

(1) x,y,...,x1,x2,... - individual variables are terms;

(2) If f(n) - a functional symbol, t1,...,tn - terms, then

f(n) (t1,...,tn) - term.

 The value of the term:

(1) if t - object variable x, then Val t =  (x);

(2) if t = f (n) (t1,...,tn), then Val t = f (n) (Val t1,..., Val tn).

Function:

f (n) (x1,...,xn) can be represented by the term t(v1, ..., vm), if {v1, ..., vm} 

{x1,...,xn} and t  = f (n)  for all interpretations  : {x1,...,xn}  {0,1}.

Examples 1.1:

1.The four-digit number of the 1952 decimal system is expressed thus:
0123

)10(10*210*510*910*11952 +++=

2.The number of a decimal system with a three-digit integer part and a three-digit fractional

part 596.174 (10) is expressed as follows:
321012

)10(10*410*710*110*610*910*5174.596 −−− +++++=

3. The number of a binary system with a four-digit integer part and a three-digit

fractional part 1010.101 (2) is expressed as:
3210123

)2(2*12*02*12*02*12*02*1101.1010 −−− ++++++=

Examples II.

1. 3.14 - positive real number with fixed-point, the integer part 3, and the fractional part

14. 2. 5 - positive integer 5.

3. 0.2 - positive real number with fixed-point, the integer part 0 and fractional part 2.

95

4. -1.001 - negative real number with fixed-point, the integer part 1 and the fractional

part of 001.

5. 0.0 - positive real number, the integer part 0 and the fractional part 0.
Tests III.

1. What will be important expression 2>5  2<6?

A) 2

B) 1

C) 5

D) 6

E) 0

2. What order of operations an expression DF  G?

A) first F, then F * G, and at the end DF  G.

B) first F  G, and at the end DF  G.

C) first F, and at the end DF  G.

D) first F, then F  G.

E), first G, then F  G, and at the end DF  G.

3. Which one is De Morgan's law?

A) (p)  p

B) p  p

C) (pq)  pq

D) pp  0

E) pp  1

96

4. Laws of logic

Lecture objective: explain the concept and definitions of the laws of logic

and review their types.

Lecture plan: study the law of double negation, commutation law,

distribution law, law of exclusion of constants, law of contradiction, law of

excluded middle, the duality principle, logical corollary, rules of logical

corollary, modus ponens rule.

Laws of logic consist of the following tautologies:

1) ╞AA (law of excluded middle)

2) ╞A→A (law of identity)

3) ╞(AB) A&B (first de Morgan’s law)

4) ╞(A&B) ~ AB (second de Morgan’s law)

5) ╞A&AA, =AAA

6) ╞ A→B ~ A B

7) ╞(AB) ~ (A→B)&(B→A)

8) ╞(A→B) ~ (B→A) (contraposition law)

9) ╞A&BB&A (conjunction commutability)

10) ╞ABBA (disjunction commutability)

11) ╞ A&(B&C)  (A&B)&C (conjunction associativity)

12) ╞A (BC)  (AB)C (disjunction associativity)

13) ╞A& (BC)  (A&B) (A&C) (first law of distributivity)

14) ╞ A (B&C)  (AB) & (AC) (second law of distributivity)

15) =A&(AB)  A, =A(A&B)A (absorption laws)

16) =A&ИA, =A&ЛЛ, =AИИ, =AЛA.

17) ╞A→ (B→C) ~ A&B→C.

Let E be a formula with close negations which does not contain other

operations except ,, . The EX formula is the result of substituting all

conjunctions in E with disjunctions and each proposition letter with its negation.

Then ╞ Е ~ ЕX.

The duality principle. Let E, F not contain other operations except , ,

 and let them be formulas with close negations. The formulas E, F obtained

from E, F by simultaneous substitution of all & with  and  with & are called

97

dual with regard to the formulas E and F correspondingly. Then the following

relations exist:

b) if ╞ E, then ╞ E. b) if ╞E, then ╞ E.

с) if ╞ EF, then ╞ EF. d) if ╞E→F, then ╞ F→E.

Logical corollary. Let there be formulas A1,A2,...,Am and B. If from the

simultaneous truth of the formulas A1,A2,...,Am there follows the truth of the

formula B, then the formula B is a logical corollary of the formulas A1,A2,...,Am;

this is indicated as A1,A2,...,Am ╞ B, (m1), where A1,A2,...,Am are premises and

B is a corollary.

Logical corollary rules. For computation of relations one single rule called

modus ponens is used which represents a procedure of transition from two

formulas of the type A,A→B (premises) to the formula B (corollary):

A, A B

B

→
 (modus ponens)

Corollary rules must satisfy the requirement that true premises lead to true

corollaries.

Predicates are logical functions J(n) (x1,...,xn) given in a non-empty space D

and acquiring value in the set {И,Л}.

The predicate J(n)(x1,...,xn) becomes an expression after its variables are

attributed to the elements of the set D.

Alphabet:

(1) x,y,z,...,x1,x2,... – object variables;

(2) P(n) (x1,...,xn),... – predicate letters (n=0,1,...);

(3) &, ,, →, , ,  – logical connectives and quantors;

(4) (,) – auxiliary symbols.

Formulas:

(1) P(n) (x1,...,xn), – elementary formulas or atoms;

(2) if A, B are formulas, then A&B, AB, A, A→B, AB – are

formulas as well;

(3) if A(x) is a formula with a free variable x, then xA(x), xA(x) are

formulas.

Free and bound variables. All variables existing in the space of action of

the quantor at such variables are called bound variables, otherwise they are

called free variables.

98

Formula interpretation. The value of the formula E[P1,...,Pm; x1, ...,xn] for

interpretation of the predicate letters : P(n)J(n) and attribution of : {x1,...,xn}

D (D) to object variables is denoted E[,]. Let us define induction for

construction of the formula E:

5) E = P(n) (x1,...,xn), then E[,] = J[];

6) E = (A&B)[P1,...,Pm ; x1,...,xn], then E[,] = A[,] & B[,].

Analogously for other logical connectives.

7) E=x1A[P1,...,Pm;x1,...,xn], then E[,] = x1A[,x1,]=И,

where : {x2,...,xn}D, if A [,a,] = И for any aD.

8) E=x1A[P1,...,Pm; x1, ...,xn], then E[,] = x1A[,x1,] = И,

where : {x2,...,xn}D, if A [,a,] = И for some aD.

 The formula E[P1,...,Pm; x1,...,xn] is called a universally valid formula or

tautology if for any space D, for any interpretations  of predicate letters

and any attributes  to object variables in interval D, E[,] = И.

Logical foundations of computer consist of logic algebra which emerged

in mid-19th century in the works of English mathematician John Boole. Its

creation was due to an attempt to solve traditional logical problems by algebraic

methods using logical operations such as , &,  denoting words and word

combinations "not", "and", "or"". With help of these logical operations a

logical expression of any complexity may be constructed.

Hardware implementation of the mentioned logical operations is realized by

means of the following logical elements of computer shown in figure 4.

Figure 4. Logical elements of computer.

Examples 4.1.

Let us show that the formula P(x,y) →Q(x) is not 1-valid and, consequently,

not universally valid.

NOT AND OR

A & v
A

A
A

A&B AvB

B

B 

99

Solution. D={1} is one-element set, I1 and I2 – interpretations of the letter

P, and J1 and J2 – interpretations of the letter Q:

x y I1 I2 J1 J2

1 1 И Л И Л

Truth-table of the formula P(x,y)→Q(x) :

x y P(x,y) Q(x) P(x,y)→Q(x)

1 1 И И И

1 1 И Л Л

1 1 Л И И

1 1 Л Л И

Examples 4.2.

Let us show that the formula xyP(x,y)→yxP(x,y) is not universally

valid.

Solution. Let D={1,2}, then the interpretations of the predicate letter P(x, y)

may be given by means of the following table:

X Y J1 J2 J3 J4  J7 

1 1 И И И И  И 

1 2 И И И И  Л 

2 1 И И Л Л  Л 

2 2 И Л И Л  И 

In particular, for interpretation J7 we obtain: for x=1: yJ7(1,y)И; for x=2:

yJ7(2,y)И, then xyJ7(x,y)=И. For y=1: xJ7(x,1)=Л, for y=2: xJ7(x,2)=Л,

then yxJ7(x,y)=Л. It follows that xyJ7(x,y)→yxJ7(x,y) = Л.

Examples 4.3.

Let us show that the formula x(xP(x)→P(x)) is not 2-valid.

Solution. D={1,2}, J1, J2, J3, J4 – interpretations of the letter P :

100

x J1 J2 J3 J4

 1 И И Л Л

 2 И Л И Л

Truth-table of the formula x (xP(x)→P(x)):

x P(x) xP(x) xP(x)→P(x) x(xP(x)→P(x))

1

2

J1

J1

И И

И

И

1

2

J2

J2

И И

Л

Л

1

2

J3

J3

И Л

И

Л

1

2

J4

J4

Л И

И

И

Examples 4.4.

Let Р be a false statement 1 = 5, Q is a false statement as well 3 = 7 and R

is a true statement 4 = 4. Demonstrate that conditional statements: «if Р, then Q»

and «if Р, then R» are both true.

Solution. If 1 = 5, then adding 2 to both parts of the equality we obtain 3 =

7. Therefore, the statement «if Р, then Q» is true. Now let us subtract 3 from both

parts of the equality 1 = 5 obtaining –2 = 2. Therefore, (–2)2 = 22, i.e. 4 = 4.

Therefore, «if Р, then R» is true as well.

Problems 4.

1. Translate each of the following arguments into logical symbols and

analyze the correctness of the result:

1) I would pay for television repair only if it functioned. It does not. For

this reason, I will not pay.

2) If he had told her nothing, she would never have found it out. And if

she had not asked him, he would not have told her. But she found it out.

Therefore, she asked him.

3) He said he would come if it did not rain. But it is raining. Therefore, he

will not come.

2. Check the correctness of argument: Ivanov will not do this work if Petrov

does it. Petrov and Sidorov will do this work if and only if Ivanov does it.

101

Sidorov will do this work, and Ivanov will not. Therefore, Petrov will not do this

work.

3. Which formulas yield the following formula sequences: A⊃(B⊃C), A,

B⊃C, B, C.

Questions 4.

7. Are the following expressions equivalent?

6) A∧B and A and B?

7) A∧B and not only A, but also B?

8) A∧B and B, even though A?

9) A∧B and B, in spite of A?

10) A∧B and both A, and B?

8. Are the following expressions equivalent?

6) A∨B and A or B?

7) A∨B and A or B?

8) A∨B and A, if not B?

9) A∨B and A and B?

10) A∨B and A or B?

9. Are the following expressions equivalent?

6) A∼B and A, if and only if B?

7) A∼B and if A, then B, and vice versa?

8) A∼B and A, if B, and B, if A?

9) A∼B and A equivalent to B?

10) A∼B and A if and only if B?

10. For which of the statements X: X=1, X=6, X=5, X=3, X=4 are the

relations (X>3) & (X<5) true?

11. For which of the words “Informatics”, “Psychology”, “Economics”

will the statement “The first letter is consonant, and the second letter is a vowel”

be true?

12. Which of the following statements are true, and which are false?

(a) The sum of interior angles of any triangle is 180°.

(b) All cats have a tail.

(c) There is an integer х satisfying the equation х2 = 2.

(d) There is an even prime number.

102

(e) Snow is white.

(f) The Earth revolves around the Moon.

(g) Paris is the capital of France.

(h) To govern is to know.

 Tests 4.

7. What characterizes the law of excluded middle?

1) Implication of two statements is equivalent to the inverse implication of

their negations.

2) Any statement is either false or true, no third possibility exists.

3) Any statement is the logical corollary of itself.

4) To negate a negation of a statement is equivalent to its assertion.

8. Interpretation is:

9) Concepts whose application to logical calculation expressions depends

in great measure on the choice of interpretation.

10) Juxtaposition of every elementary expression р with a certain true

value.

11) Concepts whose application to logical computation depends in great

measure on the choice of interpretation.

12) Relation between objects which means that the state or properties of

any of them change if the state or properties of others are changed.

9. Is the logical connective «or»:

6) connective?

7) exclusive?

8) divisive?

9) auxiliary?

10) negating?

10. What characterizes the law of double negation:

5) Any statement is either false or true, no third possibility exists.

6) Any statement is the logical corollary of itself.

7) To negate a negation of a statement is equivalent to its assertion.

8) Any statement is the logical corollary of itself.

103

11. Graphs.

The purpose of the lecture: to consider the concept of the graph, the types

of graphs and their properties.

Outline of the lecture: to explore formal definitions and ways to represent

graphs, to analyze different types of graphs and types of applications of graphs

for various tasks.

Definitions 6.1:

The graph is a dynamic networking connected structure of data represented

by of a plurality of pairs called vertices and edges. Each vertex can be connected

with several other vertices or with itself by means of edges and vertices, which

do not form a hierarchy. Formally, a graph is defined as a set of pairs of G = (X,

A), where X - the set of vertices, A - the set of edges, actually is a relation on a

set X, i.e. XXA  . If ix ∊ X and jx ∊ X – vertices , then),(ji xx – edges.

There are several types of graph. If from each vertex of the graph

originates equal number of edges and if equal number of edges goes in each

vertex, such a graph is a regular graph. If for each edge of the graph direction is

defined, the graph is called a directed graph. If each edge of the graph has a

weight, a graph is called weigthed graph, i.e., you can define a function w : E,

where R - the set of real numbers, w -weight of graph and w≥0.

Matrix of adjacency is one of the ways to represent a graph in the form of a

matrix.

Matrix of adjacency of a graph G with a finite number of n vertices

(numbered from 1 to n) is a square matrix A of size n, wherein the value of

element ija equals to number of edges from the i-th vertex in the j-th vertex.

Sometimes, especially in the case of an undirected graph, the loop (the edge of

the i-th vertex in itself) counts as two edges, i.e., the value of the diagonal

element ija in this case equals to double number of loops around the i-th

vertex.

Matrix of adjacency of a simple graph (not containing loops and multiple

edges) is a binary matrix which contains zeros on the main diagonal.

In graph theory are used following:

104

− Incidence matrix. This matrix A with n rows corresponding to the vertices

and m columns corresponding to the edges. For a directed graph column

corresponding to the arc (x, y) contains - 1 in the row corresponding to vertex x,

and 1 in the row corresponding to the vertex y. In all others 0. Loop, i.e. arc (x,

x) may be represented by a different value in the row x, e.g., 2. If an undirected

graph, the column corresponding to the edge (x, y) contain 1, the corresponding

x and y and zeros in all other rows.

− The matrix of adjacency. This is a matrix n × n where n - the number of

vertices, where aij =1, if there is an edge going from vertex x to vertex y and

aij=0 otherwise, i.e.:

ija - the number of edges connecting vertices iv and jv , and in A) in some

applications of each loop (an edge },{ ii vv for some)) is counted twice;

B) adjacency matrix of empty graph, does not contain any edges, consists of

zeroes.

Below are examples of incidence matrix of and adjacency matrix for continuous

graph shown in Figure 6.1

Figure 6.1 Incidence matrix Adjacency matrix

Given a graph),(AXG= , where }{xX i= , i = 1, 2, ..., n – the set of

vertices, }{a jA= , j = 1, 2, ..., m – the set of arcs.

Subgraph)','(' AXG = of the original graph G is a graph G ', for which

XX ' и AA ' . Examples of subgraphs are shown in Fig. 6.2, b, and

original graph - Fig. 6.2 a.

105

Figure 6.2. Types of subgraphs: a - the original graph; б - subgraphs; в -

spanning subgraph; г - induced subgraphs

If A - adjacency matrix of the graph G, the matrix A
n has the following

property: item at the i-th row, j-th column is equal to the number of paths from

the i-th vertex to the j-th consisting of exactly n edges.

The path in a graph is a sequence of edges leading from one vertex to

another vertex, such that every two neighboring edges have a common vertex

and no edge occurs more than once, that is, formal path in a graph is a sequence

of vertices),,,,,(m1m321 xxxxx −... , that pairs)},(),...,,(),,{(m1m3221 xxxxxx −

will be edges. Two vertices ix ∊ X and jx ∊ X in the graph is called connected

(disconnected), if it exists (do not exist) the path leading from ix to jx . This

path can be in both directions. If every two vertices in the graph are connected,

then this graph is a connected graph. If the graph contains at least one pair of

106

disconnected vertices, the graph is disconnected. If all pairs of vertices connected

in both directions, so the graph is strongly connected graph.

The path with no repeated edges is called a chain and the chain without

repeated vertices called simple.

Chain in which the end vertices coincide is called a cycle, and the cycle in

which no recurring peaks other than the end, called simple, i.e. the path way back

to the same vertex, then that path is called the closure (cycle), i.e. in the closure

of the initial and final vertices are the same. If the closure does not pass through

one of the vertices of the graph more than once, it is called a simple closure. If

the closure originates from a single vertex and directly enters into the top back,

it is called a loop, i.e, the loop has a unique vertex.

The length of the path is the number of edges of this path. If the weights of

the edges are their length, then the path length is calculated as follows:


−

=

+− =
1m

1i

1iim1m321)()(xxwxxxxxw ,,,...,,,
.

In the graphs you can perform the following tasks: a comparison of the

two graphs, finding the shortest path from one vertex to another, finding the

number of closed paths and etc.

A tree is a graph in which all vetices are connected, and the paths are not

closed, i.e., connected graph is without cycles and without loops.

The tree vertices are divided into the following types:

 1) the root – a vertex, from which originates one or more edges, but enter

no edge, i.e., a vertex, which does not have a single ancestor, but it can have

many descendants;

2) branch - the vertex, to which enters a single edge, but many egdes can

originate from it, i.e., the veretx which has a single ancestor and can have many

descendants;

3) sheet - the vertex, to which enters only one edge, but originate no edge,

i.e. the vertex which has a single ancestor, but does not have any descendants.

In the tree the direction of path passes through the branches from the root

to the leaves. Inside the tree can be a few trees, which will be called subtrees.

You can now give the following recursive definition (referring to itself):

1. A recursive basis: the set {v}, consisting of only one vertex v is a tree

where its unique vertex is both the root and leaf.

107

2. Recursive step: if v - vertex and nAAA ,...,, 21 - the trees, then it is possible

to build a new tree in which the root is the vertex v, and edges – originates from

this vertes and enters the roots of nAAA ,...,, 21 trees.

3. Recursive conclusion: Trees obtained only by rules 1 and 2.

This definition of a tree can be represented in Figure 6.3 as follows:

 A1 A2 . . . An

Figure 6.3. Determination of tree

From this definition it is clearly evident that the tree is a hierarchical

connected dynamic structure of data represented by single root vertex and its

descendants. The maximum number of descendants of each vertex and

determines the size of a tree.

Among the trees stands out, the so-called binary trees. It can be defined as

follows:

Binary Tree - a tree in which each node has at most two descendants. This node

is called the parent node and the descendants are called left heir and right heir.

We give a recursive definition of a binary tree. A binary tree is the following set

of vertices:

− either contains nothing (the empty set);

− or consists of a root, which is connected with two binary trees, called left-

hand subtree and right-hand subtree.

Thus, the binary tree is either empty or consists of data and two subtrees,

each of which may be empty. If in some vertex two subtrees are empty, then it

is a leaf. Formally, a binary tree is defined as follows:

<binary tree> :: = nil | (<data> <binary tree> <binary tree>)

where nil - empty.

v

108

The following tasks are solved in trees: tree traversal, search for tree,

adding a new node to the tree, destroying the tree tops, comparisons of trees and

others.

Binary trees are used in the search algorithms: each vertex of binary search

tree corresponds to an element of a sorted set, all his left descendants the left to

fewer elements, and all his right descendants to a great element. Each node in

the tree is uniquely identified by a sequence of non-recurring vertices

from the root and until it – by path. The path length is a level of node in the

hierarchy tree. For practical purposes, generally two subspecies of binary trees

are used: binary search tree - binary search tree (BST) and binary heap.

− Binary search tree has the following properties:

− the left subtree and the right subtree are binary search trees;

− all the vertices of the left subtree of v arbitrary vertex has value of key

of data that is less than the value of key of data of the vertex v itself;

− all the vertices of the right subtree of the same vertex v has value of

key of data that is greater than the value of key of data of vertex v.

Clearly, data from each node should have keys on which the comparison

operation is determined.

Binary heap or sorting tree has the following properties:

− value at any vertex is not less than the values at the vertices of its

descendants;

− leaf depth (distance until the root) does not differ by more than one layer;

− the last layer is filled from left to right.

Such heap is called max-heap. There are also heaps, where the value in

each vertex, conversely, no more than the values of its descendants. Such heaps

are called min-heap.

Examples 6.2:

1. A binary relation over finite objects can be represented as a directed graph as

shown in Figure 6.4. The following shows the relationship divisibility of

integers from 1 till 12: 2 and 3 divided by 1; 4 and 6 is divided into two; 6 is

divisible by 2 and 3; 12 divided by 4 and 6.

109

Figure 6.4. Representation of binary relation

2. Presentation of a binary tree shown in Figure 6.5.

Figure 6.5. A binary tree.

2. Bypass of binary tree of arithmetic expression

((3 + 1) * 3 / (9-5) 2 + (3 * (7-4) 6)

from the top to the bottom and from the left to the right is shown in Figure 6.6.

R

R1 L1

L2 L3 R2 R2

Left subtree Right subtree

110

Figure 6.6. Bypass of tree

Exercises 6.1:

1. Build a directed weighted graph for describing the structure of identifier.

2. Build the tree for the expression ((a / (b + c)) + (x * (y - z))).

3. Determine the adjacency matrix A of an undirected graph that contains a loop

around the vertex one, which depending on the application element 11a may be

considered equal to one (as shown below), or to two.

Figure 6.1. Undirected graph

Help:

1. Without loss of generality, to facilitate the construction of the desired graph

we will consider not letters, but only one letter not numbers, only one number,

which will serve as weight for required weighted graph.

2. In the corresponding binary tree, leaves are operands, and other vertices are

operations.

3. The adjacency matrix

Exercises 6.2:

On a finite set N = {1, 2, 3, 4, 5} is given binary relation.

R = {(1,2), (1,4), (1,5), (2,3), (3,2), (3,4), (4,4), (4,5) , (5,3), (5,4)}.

Record domain and the range of values for this relation. Draw a graph of this

relation. Make up adjacency and incidence matrix for it.

https://commons.wikimedia.org/wiki/File:6n-graph2.svg?uselang=ru

111

Question 6:

1. How path is formed in the graph?

2. What edges are called multiple?

3. What vertex is called an isolated?

4. What is the level of the isolated vertices?

5. What means the level of vertex?

6. What graph is called a cyclic?

7. What is the incidence matrix?

Test 6:

1. What are the types of graphs?

A) directed graph, undirected graph;

B) directed graph, defined graph;

C) specified graph, undirected graph;

D) specified graph, unsepcified graph;

E) unspecified graph, undirected graph.

2. What is a tree?

A) graph without loops and cycles;

B) graph without weights;

C) graph without networks and cycles;

D) weighted graph;

E) directed graph.

3. What is a binary tree?

A) tree in which each vertex has at most two descendant;

B) tree, which has two vertices;

C) tree, which has no cycle;

D) tree, which has no loop;

E) tree, in which one vertex has no direct descendants.

112

7. Finite automatons

Lecture objective: explain the concept of universal automaton and finite

automaton.

Lecture plan: study the composition and structure of abstract automaton;

give a formal definition of indeterminate and determinate finite automaton and

of languages recognized by such automatons.

Usually under the term “automaton” we understand a device which, once

turned on, can perform a number of given operations on its own. However, we

deal with an abstract automaton used as a mathematical model of any digital

(discrete) devices in which all signals are quantized in level, and all actions are

quantized in time.

An abstract automaton (hereinafter – automaton) can distinguish a set or

transform a set into another set; it consists of a tape, a head unit and a controller

device; it may also have working memory.

Tape – a linear sequence of cells, each of which can store only one symbol

from a certain finite input (output) alphabet.

The tape is infinite, but at each given moment only a finite number of cells

is occupied. Special markers denoting the beginning and end of the tape may

occupy the boundary regions to the left and right of the occupied cell area. The

marker may be just at one end of the tape or be absent altogether.

Input (output) head unit – a device which can view only one tape cell at any

given moment of time. The head unit can shift one cell to the left or to the right,

or remain immobile. It is generally assumed that the head unit is read-only, i.e.

during the work of the automaton the symbols on the tape do not change. But it

is also possible to consider automatons whose head unit both reads and writes.

Thus, the head unit may perform both reading and writing operations.

Working memory – an auxiliary storage for reading and writing data.

Working memory may be organized as a dynamic data structure (queue or stack).

Controlling unit – a device which governs the automaton’s behavior

and has a finite internal memory for storing a finite number of states. It

governs the automaton’s behavior by means of a function (relation) which

describes how the states change depending on the current state and current

input symbol read by the head unit, and the current information extracted

from the working memory if available. The controlling unit also

113

determines the direction of the shift of the head unit and the information to

be entered in the working memory.

The automaton is determined by the input of a finite set of states of the

controlling unit, finite set of accepted input symbols, the source state and the set

of final states, as well as the state transition function which, by the current state

and current input symbol being its arguments, indicates all possible next states

or values of this function. The work of the automaton may be conveniently

described by means of its configuration. The automaton’s configuration

includes:

- controlling unit’s state;

- contents of the input tape and the position of the input head unit;

- contents of the working memory and the position of the working head unit

if available;

- contents of the output tape if available.

The automaton’s configuration can be initial, current and final.

In its initial configuration the internal memory contains a previously entered

symbol denoting the initial state of the controlling unit; the controlling unit is in

the initial state; the head unit reads the leftmost input symbol on the tape; if

working memory is available, it contains preconfigured initial contents.

In its current configuration the internal memory contains previously entered

symbols of current states of the controlling unit; the controlling unit is in one of

its current states; the head unit reads neither the leftmost nor the rightmost

current input symbol; if working memory is available it has preconfigured

current contents.

In its final configuration the internal memory contains previously entered

symbols denoting the final states of the controlling unit; the controlling unit is in

one of its final states; the head unit views the right end marker or, if the marker

is not available, it leaves the input tape; if working memory is available then it

satisfies certain conditions.

Prior to its inception the automaton is its initial configuration, i.e. the symbol

denoting the initial state of the controlling unit is entered in the internal memory,

the input chain is entered in the input tape; if working memory is available,

corresponding data is entered in the memory.

114

The automaton uses a program consisting of a finite sequence of steps. Each

step consists of the current (initial) and next (final) configuration.

At the step’s beginning the memory reads the symbol of the current

state of the controlling unit, the input tape reads the current input symbol;

the information in the working memory, if available, is also read. Then,

depending on the current state and read information the automaton’s

actions are determined:

(6) Input head unit moves to the right, left or remains in place;

(7) A new symbol is entered in the current cell of the input tape or the

previous symbol is not changed;

(8) Some information, if available, is entered in the working memory;

(9) A symbol is entered in the output tape, if the tape is available.

(10) The controlling unit moves into another state and the number

(symbol) of this state is entered in the internal memory.

As a result, during one step of the automaton the input head unit can move

one cell to the left, right or remain in its place. As the automaton functions, the

contents of the input tape cells do not change, but the contents of the output tape

cells and the working tape cells can.

If the automaton views the input chain and executes a sequence of steps

starting from the initial configuration and finishing in a final configuration, then

it recognizes the chain.

A language recognized by the automaton is a set of chains that the

automaton recognizes.

Examples 8.1:

4. A public pay telephone may serve as an example of automaton: it

recognizes the input of a coin and enters the dial number state.

5. An ATM is an automaton: it recognizes an inserted card and enters the

pin-code input state.

6. A subway ticket gate is an automaton: it recognizes a token and enters the

open gate state.

Finite automatons recognize regular languages. First, formal

definitions of indeterminate and determinate finite automatons are given,

115

then the languages they recognize are described, followed by the proof of

their equivalency.

Finite automatons are among the simplest and most widespread

recognizing machines. A finite automaton contains output tape, internal

memory, external memory, head unit and controlling unit.

Finite automaton may be indeterminate or determinate, but its head unit

must be one-way only and move only to the right. Their formal definitions

are as follows:

Definition 8.1. Indeterminate finite automaton (IFA) is determined by

the seven element set M = <Q,Т,I,F,⊢,⊣,Δ> where:

Q – finite set of states of the controlling unit;

T– finite set of input symbols, Q∩T=Ø;

I – set of initial states of the controlling unit, I⊆Q;

F– set of final states of the controlling unit indicating that the input chain is

recognized,F⊆Q;

⊢,⊣– tape start and end markers ⊢,⊣T;

Δ–set of relations of transition Δ⊆QT*(Q), (Q) – set of all subsets of the

set Q.

The determined finite automaton (DFA) is a special case of IFA.

Definition 8.2. Finite automaton M = <Q,Т,I,F,⊢,⊣,Δ> is called

determined, if:

(5) The set of initial states I contains exactly one element;

(6) For each transition <q, τ, p>∈Δ |τ|=1 holds true;

(7) For each state q∈Q and for each symbol t∈T there exists no more than one

state p∈Q with an attribute <q, t, p>∈Δ;

(8) Other symbols are identical to IFA.

Notes 8.1:

4. Sometimes instead of the set of relations of transition Δ taking logical

values “true” or “false”, the function of transition δ is used which takes value as

a symbol of the set Q, where δ: QT*→ (Q) − in the case of IFA and δ:

QT*→ Q− in the case of DFA. From the function δ it is easy to arrive at the

relation Δ by assuming

Δ = {<q, τ, (q, τ)>: qQ, τT*}

116

5. Henceforth we shall use both relations of transition and functions of

transition depending on the context without making particular mention. For any

qQ,pQ и τT* we may use:

3) For relations of transition: <q,τ,{p}>−for IFA, <q,τ,p>−for DFA;

4) For function of transition: (q,τ)={р}−for IFA,(q,τ)=p − for DFA.

6. If we want to use the function of transition instead of the relation of

transition, then in the formal definition KA it is necessary to substitute the

symbol Δ with δ, and leave other symbols unchanged at their previous values,

i.e. we obtain M = <Q, T, I, F, ⊢,⊣,δ>.

The KA transition may be illustrated as a diagram, in which each state

is denoted with a circle and transition with an arrow. An arrow from the

state qQ to the state pQ denoted with a chain τT* indicates that <q, τ, p>

(or (q, τ) = p) is a transition within the given IFA. Each initial state may be

recognized by a short arrow leading to it. Each final state is indicated with a

double circle.

14. Are the following grammars equivalent?

S→ab, S→aKSb, K→bSb, KS→b, K→ε

and

S→aAb, A→ε, A→b, A→S, A→bSbS

15. Are the following grammars equivalent?

S→aD, D→bba, D→baDa, D →aDaDa

and

S→aaE, S→abD, E→bDD, D→aaEa,D→abDa,D→ba?

16. What class does the following grammar belong to?

S→abba, S→baa?

17. What class does the following grammar belong to?

S→AD, A→aA, A→ε, D→bDc, D→ε

18. Is the grammar with the rules

S→AB, A→a|Aa,A→a|Aa

equivalent to the grammar with the rules

S→AS|SB|AB, A→a, B→b?

19. Is the grammar with the rules

S→cE, E→ddc,E→dcEc,E→cEcEc

equivalent to the grammar with the rules

117

S→ccA, S→cdB,A→dBB,B→ccAc,B→cdBc,B→dc?

How should one describe in unambiguous grammar a language generated by

the ambiguous grammar Ε→E+E|E*E|(E)|i?

Examples 8.2:

3. For КА M1 with one transition and parameters: Q={q,p}; T*={τ}, I={q},

F={p}, (q,τ)=p the diagram is shown in the figure 8.1.

4. Let КА M2 have the following parameters: Q={1,2},

T={a,b}, I ={1}, F ={2}, Δ={<1, aaa, 1>, <1, ab, 2>, <1, b, 2>, <2, ε, 1>}.

As we can see, figure 8.2 shows a diagram of transitions of IFA M2, in which

regular expressions aaa, ab, b,ε are used as arc markings. Such conception

makes construction of the diagram easier and renders it compact and intuitive.

3.

4.

КА M3 for recognition of identifiers consisting only of letters and

numbers and starting with a letter will have the following parameters:

Q={1,2}, T={b,d}, I={1}, F={2}, (1,b)=2,(2,b)=2,(2,d)=2, where b – letter,

d – number. The diagram КА M3 is shown in the figure 8.3.

q p
τ

Figure Diagram .

 2

aaa

Figure 8.2. Diagram КА with regular expressions

ab

b

ε

Figure 8.3. Diagram КА for identifier.

 2

b

b

d

118

Note 8.3.If a diagram contains several transitions with the same starting

and ending point, they are called parallel transitions. Usually parallel

transitions are indicated in a diagram with a single arrow. The markings of

transitions are separated with commas. In figure 8.4 a diagram КА M4 is

shown with parallel transitions for chains ab, b.

The КА transitions may be represented as functions by means of a table

or commands.

Convention 8.1.Among all KA states the initial state qs and final state qf

stand out; here s and f are understood not as numeral variables but as mnemonic

marks of start (start) and end (final).

Examples 8.3. In the table 8.1 the function of transition δ КА M5 is

shown determined by the sets Q = {qs, q1, q2, q3} and T= {t1, t 2, t 3}.

Table 8.1. Values of the function of transition  КА M5.

 Input

t1 t2 t3

State

qs q2 q2 q2

q1 q3 qs qs

q2 q2 q2 q2

q3 q3 q2 qs

The function of transition in the table 8.1 may be represented as

commands in the following way:

(qs, t1) = q2, (qs, t2) = q2,(qs, t3) = q2,

(q1, t1) = q3, (q1, t2) = qs,(q1, t3) = qs,

(q2, t1) = q2, (q2, t2) = q2,(q2, t3) = q2,

(q3, t1) = q3, (q3, t2) = q2,(q3, t3) = qs.

Figure 8.4. Diagram .

 2

aaa

ab,b

ε

119

Let КА M be given with initial state qsQ,current state qQ, final state

qfQ and unused current input chain τT*. Then the following description

may be given.

Definitions 8.3:

4. If the head unit views the leftmost symbol of the input chain, then the pair

(qs,τ)QT* is called initial configuration КА;

5. If the head unit views the current symbol of the input chain τ, then the

pair (q,τ)QT* is called current configuration КА;

6. If the input chain τ has been read completely, then the pair (qf,

ε)QT* is called final configuration КА;

Note 8.4. By its contents the configuration is an “instantaneous description”

of КА. Assuming that the initial chain whose belonging to the language under

discussion is to be verified is in the tape, then in the configuration (q,τ) the chain

τ is the part of the initial chain which remains in the tape.

The step of КА is determined by the state of the controlling unit and the input

symbol being viewed at that moment. The step itself consists in the change of

state of the controlling unit and the shift of the head unit one cell to the right.

The Step КА M is yielded by the binary relation ╞M, determined over

its configurations in the set QT*. If the automaton is known, then the letter

M in the relation ╞M may be omitted.

Let tT be the leftmost symbol of the input chain still not read and both

for qQ and pQ <q, t, p>Δ holds true; then for the chains τT* the relation

(q, tτ)╞ (p, τ) is true which determines the step of the automaton; this means

that the automaton is in the state q and the state unit is viewing the symbol

t in the input tape; then КА M moves into the state p and the head unit

moves one cell to the right. If τ= ε, then the input chain is considered to

have been read completely.

Examples 8.4. Let τ = abba. Then in the diagram КА M2 in the figure 8.3

there is a step determined as relation (1, abba)╞ (2, ba).

Definition 8.4.╞k is the k–th degree of relation╞, if a chain of k+1

configurations exist

(q0,τ0), (q1,τ1), (q2,τ2),…, (qk–1,τk–1), (qk,τk)

so that for any i (1 i k) the relation is true

(qi–1,τi–1)╞ (qi,τi), where q0=qs, τ0=τ, qk= qf,τk=ε.

120

If for any i1 or i0 (q0,τ)╞i(qi,ε) holds true, then we may write

(q0,τ)╞+(qi,ε) or (q0,τ)╞*(qi,ε) correspondingly. Here by╞+ is denoted the

transitive closure of relation ╞, and by ╞* – the reflexive and transitive closure

of relation.

Definition 8.5. Automaton M recognizes input chain τ, if the relation (qs,τ)

╞* (qf,ε) holds true.

Examples 8.5. Let τ = aaaab. Then in КА M2 in the figure 8.3 following

relations (1, aaaab)╞(1, ab) and (1, ab)╞ (2, ε) hold true.

Definition 8.6. If the language L consists only of input chains recognized

by automaton M, then this language is recognized by automaton M and is

denoted as L(M), i.e.

L(M)⇌{τ: τT* & (qs,τ)╞*(qf,ε)}.

Lemma 8.1. If (q1, x)╞* (q2,ε) and (q2, y)╞* (q3,ε) is true, then (q1, xy)╞*

(q3,ε) is true.

Proof. For this it is necessary to perform induction by a number of steps in

the program of work КА, leading from configuration (q1,x) to configuration

(q2,ε).

Examples 8.6. Let for M6=<{qs,q1,qf},{0,1},qs,{qf},⊢,⊣,>

there exist the following transition relations:

<qs,0,{q1}>,<qs,1,{qs}>,<q1,0,{qf}>,<q1,1,{qs}>,<qf,0,{qf}>,<qf,1,{qf}>

КА M6 recognizes all chains of zeroes and ones in which there are two

zeroes in a row. The conditions may be interpreted in the following way:

qs–initial condition indicates that “two zeroes in a row have not been

detected and the initial symbol is a zero”;

q1–state indicates that “two zeroes in a row have not been detected and the

initial symbol is a zero”

qf– final condition shows that “two zeroes in a row have been detected”.

It may be noted that КА M6, once entering the state qf, remains in that

state.

For the initial chain 01001 the only possible chain of configurations

starting from configuration (q0, 01001) will be (qs,01001)╞ (q1,1001)╞

(qs,001)╞ (q1,01)╞ (qf,1)╞ (qf, ε).

Thus, 01001L(M6).

The diagram of this automaton is shown in the figure 8.5.

121

Definitions 8.7:

3. Path КА is a tuple <q0, r1, q1, r2,…, qn>, where n≥0 and ri = <qi–1, τi,

qi>∈Δ for each i, 1≤i≤n. Here q0 – beginning of the path,qn – end of the path,

τ1...τn – mark of the path, n – length of the path.

4. A path is called successful if its beginning belongs to I and its end

belongs to F.

Note 8.5. For any state q∈Q there exists a path<q>. Its mark ε, beginning

and end coincide.

Examples 8.7. Let us consider КА M2in the figure 8.3 Let τ = baaab.

Then the path <1,<1,b,2>,2,<2,ε,1>,1,<1,aaa,1>,1,<1,b,2>,2> is successful.

Its mark is baaab, and its length is 4, i.e.: q0=1, q1=2, q2=1, q3=1, q4=2;

r1=<1,b,2>, r2=<2,ε,1>, r3=<1,aaa,1>, r4=<1,b,2>;

τ1=b, τ2=ε, τ3= aaa, τ4= b.

Using the concept “path” it is possible to give alternative definitions to

already introduced concepts of recognized chain and language.

Definitions 8.8:

3. Chain τT* is recognized КА M, if it is the mark of a successful path.

4. КА M recognizes a language L(M), if it consists only of marks of all

successful paths.

Note 8.6. If I⋂F≠Ø, then the language recognized by КА M = <Q, Т,⊢,⊣,I,

F,Δ> contains an empty chain ε.

Examples 8.8. If КА M7= <Q, Т,⊢,⊣,I, F,Δ> is given as Q = {q1,q2}, Т =

{a,b}, I = {q1}, F = {q1,q2}, Δ = {<q1,a,q2>, <q2,b,q1>}, then it is determined

and recognizes the following language:

L(M7) = {(ab)n: n≥0} ∪ {(ab)na: n≥0}.

The diagram of this automaton is shown in the figure 8.6.

1

0

 q1 qf
0

0,1

0,1

5. Diagram КА .

q2

a

q1

Figure 6. Diagram КА M7.

b

122

Definition 8.9. DFA M = <Q, Т,⊢,⊣,I, F,Δ>, is called full, if for any state

q∈Q and for any symbol t∈T there exists such state p∈Q that <q, t, p>∈Δ, i.e.

(q, t) = р.

Examples 8.9. The diagram of full automaton M8 with the following

parameters Δ = {<1,a,2>, <1,b,3>, <2,a,3>, <2,b,1>, <3,a,3>, <3,b,3>}, Q =

{1,2,3},T = {a,b}, qs = {1}, F ={1,2} is shown in the figure 8.7.

Tasks 8:

10. Find a КА recognizing language {αβ: α∈{a,b}*, β∈{a,b}*}.

11. Find a KA recognizing language {a,b}* \ ({an: n≥0}∪{ bn: n≥0}).

12. Find a KA recognizing language {aξb: ξ∈{a,b}*∪{bξa: ξ∈{a,b}*}.

13. Find a KA recognizing language {τ∈{a,b}*: |τ|a ≥3}.

14. Find a KA recognizing language {ambnambn: m,n1}.

15. List all configurations (q, τ), satisfying the condition (1, abaacdcc)

╞* (q, τ), in КАM9 shown in the figure 8.8.

16. Find the step of the automaton if it is determined as

М = <{ q0,q1,q2,qf}, {a, b, c}, , q0, {qf}>,

where (q0,a)={ q1,q2}, (q1,a)={q1}, (q1,b)={qf}, (q2,c)={qf},

L(М) = {ac}∪{anb: n1}.

Рисунок 7. Диаграмма КА M8

 2

a

1

b

a

b

b

a

Figure 8. Diagram КА M9.

3

a

c a

b

c

d

123

17. Find the full determined finite automaton for

language (a∨b)*(aab∨abaa∨abb)(a∨b)*.

18. Find the full determined finite automaton for

language (b∨c)((ab)*c∨(ba)*)*.

10. Find the full determined finite automaton for

language (b∨c)*((a∨b)*c(b∨a)*)*.

Questions 8:

13. Is КАM10 shown in the figure рисунке 8.9. determined?

14. Do КА states q1, q2 and chains α,β,δ exist such that the relations (q1,

αβ)╞* (q2, β) и ¬ (q1, αδ)╞* (q2, δ) hold true?

15. How are |Q|, |T|, |Δ|,|τ| and the number of configurations attainable

from (q,τ) related in the sense of ╞*?

16. What automaton can recognize the language generated by the regular

expression (abab)∨(aba)*?

17. What contains the input tape?

18. What determines the direction of the shift of the head unit?

19. What does the automaton configuration consist of?

20. What types of configurations exist?

21. What does an automaton – recognized language consist of?

22. Is the determined finite automaton M11 with alphabet Т = {a, b, c}

shown in the figure 8.10 full?

Figure 9. Diagram КА M10.

4

b

a

a

b

a

b

b

a

124

23. Is the determined finite automaton M12 with alphabet Т = {a, b}

shown in the figure 8.11. full?

24. What does the graph of transition of finite automaton satisfying a

given grammar look like?

   

+−→

+−−−→

++→

−+=

ABBCC

AABB

AAP

CPCBAG

||*|*|*

|||

|:

.,,,,,*,,

Tests 8:

1. Finite automatons move to a state in accordance with:

A) transition table in the automaton’s memory;

B) given task;

C) figures;

D) directions;

E) contents.

2. Which automaton is called determined?

Figure 8.11Diagram КА M12.

 2

a

1

b

a

b

b

a

Figure 10. Diagram КА M11.

3

a

с с

b

3

a a

b b

с

125

A) if for any acceptable configuration of the identifier arising at one of the

steps of its operation there exist two configurations in one of which the identifier

will move in the following step;

B) if for any acceptable configuration of the identifier arising at one of the

steps of its operation there exists a uniquely possible configuration in which the

identifier will move in the following step;

C) if the identifier has an acceptable configuration for which there exists a

finite set of configurations possible at the next step of operation;

D) if the identifier allows reading input symbols in one direction only (“from

the left to the right”);

E) if the identifier allows that the reading device move in both directions

with respect to the chain of input symbols – both forwards from the beginning

of the tape to its end and backwards going back to previously read symbols.

3.Finite automaton is a five – element set M= <Q, T, δ, q0, F>, where Q is

A) a finite set of acceptable input symbols;

B) a finite set of states;

C) transition function;

D) initial state;

E) final state.

126

LITERATURE

1. Turetsky V.J. Mathematics and computer science.- Moscow: Infra-M,

2000.

2. Urginovich N. The Practical work on information technologies. -

Moscow: BINOM, 2004.

3. Kuk D. The computer mathematics. - Moscow: Nauka, 1990.

4. Kozlov V.N. Mathematics and computer science.- Piter, 2004.

5. Chechkin A.V. Mathematical computer science. Moscow: the Science,

1991.

6. Akimov O.E. The discrete mathematics: logic, groups, graphs. -

Moscow: The Laboratory of base knowledge, 2001.

7. Novikov F.A. The discrete mathematics for programmers: the Textbook

for high schools. –St-Petersburg: Piter, 2008.

8. Meyer B., Baudoin C. Programming methods. In two parts: Part 2.

Translate from French Y.A. Pervina - Moscow: Mir, 1982.

9. Borubaev A.A., Pankov P.S. discrete mathematics. Kyrgyz-Russain

Slavic University, Bishkek, 2010.

10.http://www.regentsprep.org/regents/math/algebra/AP1/Interval

11. http://en.wikipedia.org/wiki/Interval_(mathematics)

12. Sharipbay A.A. Informatics, Almaty, Evero, 2015, -313 p.

13. Sharipbay A.A. Theory of languages and automata, Astana, L.N. L.N.

Gumilev, 2015, -207 p.

127

128

